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ABSTRACT

Generating artificial earthquake ground motions has been of interest for structural engineers for a long
time. A method has been proposed to generate earthquake ground motion time histories.  With this
method, the problem of shortage of recorded ground motions can be overcome and it will be helpful in
performance based earthquake engineering. The shortcomings of traditional methods such as scaling
and spectrum matching are overcome in this method as it  reproduces the real  characteristics of the
earthquake. The method is based upon a stochastic ground motion model, which has separable temporal
and spectral  non-stationarities.  The ground motion model uses six parameters to represent  the time
duration, amplitude and the shape of the decaying end (temporal non-stationarity) and three parameters
to represent  the  predominant  frequency and  bandwidth (spectral  non-stationarity)  of  the process.  A
database  of  recorded  earthquake  ground  motions  is  created.  In  the  next  step,  the  nine  parameters
required to depict a particular ground motion are determined for all the ground motions in the database.
Probability distributions are created for the parameters of all the earthquakes in the database. Now, the
parameters required by the stochastic ground motion model to simulate ground motions are obtained
from the distributions. Monte Carlo Simulations can be used to generate a huge number of ground
motions. As an example, 100 arbitrarily chosen recorded earthquake ground motions are collected and
the  method  is  demonstrated.  The  method  can  be  used  to  generate  ground  motions  of  specific
characteristics by using already recorded ground motions of similar characteristics.
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3. INTRODUCTION

Earthquake ground motions are non-stationary in both time and frequency domains. Temporal non-
stationarity  refers  to  the  variation  in  the  intensity  of  the  ground  motion  in  time.  Spectral  non-
stationarity refers to the variation in the frequency content of the motion in time. Although temporal
non-stationarity can be easily modelled by multiplying a stationary process by a time function, spectral
non-stationarity is not so easy to model. However, both effects are important, particularly in the non-
linear response analysis. The modelling, analysis and simulation of ground motion signals is of crucial
importance in studying and improving the behaviour of structures under earthquake excitation.

The modelling, analysis and simulation of ground motion signals is of crucial importance in studying
and  improving  the  behaviour  of  structures  under  earthquake  excitation  and  has  thus  attracted
significant  attention  during  the  past  several  years.  The  growing  interest  in  performance-based



earthquake engineering (PBEE) in recent years has further increased the need for stochastic modelling
of ground motions. The PBEE analysis typically considers the entire spectrum of structural response,
from linear to grossly non-linear and even collapse. For such an analysis, realistic characterization of
the ground motion is essential. In the current PBEE practice, usually recorded ground motions are
employed, which are then scaled to various levels of intensity. This approach suffers from scarcity of
recorded ground motions for specified earthquake characteristics. Stochastic ground motion models
provide an alternative for use in PBEE in lieu of or in conjunction with recorded ground motions.

There are two types of stochastic ground motion models: models that describe the random occurrence
of fault  ruptures at the source and propagation of the resulting seismic waves through the ground
medium (source based models)  and models that  describe the ground motion for a specific site by
fitting to a recorded motion with known earthquake and site characteristics (site based models).  A
review of source based models is presented by Zerva (Zerva, 1988). By using a site based stochastic
model, one is able to generate artificial ground motions, which have statistical characteristics similar
to those of the target ground motion. A large number of site based models have been proposed in the
past. A review is presented by Shinozuka and Deodatis (Shinozuka, 1988) and more recently by Conte
(Conte, 1997).

Kiureghian (Kiureghian, 1989) proposed an evolutionary random process model for describing the
earthquake ground motion. The model is composed of individually modulated component stationary
processes, each component representing the energy in the process in a narrow band of frequencies. The
model accounts for both temporal and spectral non-stationarity of the motion. A probabilistic ground
motion model was proposed by Papadimitriou (1990) which is capable of capturing, with at most nine
parameters, all those features of the ground acceleration history which have an important influence on
the  dynamic  response  of  linear  and  non-linear  structures,  including  the  amplitude  and frequency
content non-stationarities of the shaking. The model is based on bayesian probabilistic framework. A
fully non-stationary stochastic model for strong earthquake ground motion was developed by Rezaeian
and  Kiureghian  (2008).  The  model  employs  filtering  of  a  discretized  white-noise  process.  Non-
stationarity is  achieved by modulating the intensity and varying the filter  properties in  time.  The
formulation  has  the  important  advantage  of  separating  the  temporal  and  spectral  non-stationary
characteristics  of  the  process,  thereby  allowing  flexibility  and  ease  in  modelling  and  parameter
estimation.

There  is  a  need  to  develop  a  probabilistic  model  to  generate  ground  motions  of  required
characteristics. A model based on actual recorded ground motions has been developed and presented
here.

STOCHASTIC GROUND MOTION MODEL

The stochastic ground motion model used in the present study considers both the temporal and spectral
non-stationarities. The selected model has the following advantages: 1. The model has a small number
of parameters, which control the temporal and spectral non-stationary characteristics of the simulated
ground motion and can be easily identified by matching with similar  characteristics  of  the  target
accelerogram. 2. The temporal and spectral non-stationary characteristics are completely separable,
facilitating identification and interpretation of the parameters. 3. There is no need for sophisticated
processing of the target accelerogram, such as the Fourier analysis or estimation of evolutionary power
spectral density. 4. The filter model provides physical insight and its parameters can be related to the
characteristics of the earthquake and site considered. 5. Simulation of sample functions is simple and
requires little more than generation of standard normal random variables.

The ground acceleration,  at any time t is given by,

,     (1)



where  is the modulating function at time t.  is a standard random normal variable. A modified version
of  the  Housner  and  Jennings  model,  Housner  (1964)  as  stated  below is  used  as  the  modulating
function.

,  
,  

,  
,         (2)

This model has six parameters , , , ,  and  which obey the conditions , ,  and . denotes the start time of
the process,  and   denote the start and end times of the strong-motion phase with root mean square
(RMS) , and  and  are parameters that shape the decaying end of the modulating function. In Housner
and Jennings model  is taken as 1.
k= int  where  is the time steps taken for discretizing the model,

, , (3)

Any damped single- or multi degree-of-freedom linear system that has differentiable response can be
selected as the filter, here

, 
, otherwise (4)

which  represents  the  pseudo-acceleration  response  of  a  single-degree-of-freedom linear  oscillator
subjected to a unit impulse, in which  denotes the time of the pulse.  is the set of parameters of the
filter with  denoting the natural frequency and  denoting the damping ratio, both dependent on the time
of application of the pulse. , influence the predominant frequency of the resulting process, whereas
influence its bandwidth. The predominant frequency of an earthquake ground motion tends to decay
with time. Therefore,

(5)

in which   is  the total  duration of the ground motion,   is the filter  frequency at  time   and   is the
frequency at time . For a typical ground motion, . Thus, the two parameters  and  describe the time-
varying frequency content of the ground motion.

Parameter Identification

As shown above, the temporal  and spectral  characteristics of the model are completely separable.
Specifically, the modulating function  describes the evolving RMS of the process, whereas the filter
IRF  controls the evolving frequency content of the process. This means that the parameters of the
modulating function and of the filter can be independently identified by matching to corresponding
statistical characteristics of a target accelerogram.

Identification of parameters in the modulating function

Let α=(, , , , , ) denote the parameters of the modulating function, so that = . For a target accelerogram,
a(t), we determine α by matching the expected cumulative energy of the process, , with the cumulative
energy in the accelerogram, , over the duration of the ground motion, . This is done by minimizing the
integrated squared difference between the two cumulative energy terms, i.e.,

(6)

Identification of parameters in the filter function



The parameters   and  defining the time-varying  frequency of  the  filter  in  Eq (5)  and parameters
defining its damping ratio   control the predominant frequency and bandwidth of the process. Since
these parameters have interacting influences, we first determine  and  while keeping the filter damping
a constant,  . For a given , the parameters  and  are identified by matching the cumulative expected
number of zero-level up-crossings of the process, i.e. , with the cumulative count  of zero-level up-
crossings in the target accelerogram for all  t, . This is accomplished by minimizing the mean-square
error,

(7)

where , is the mean number of times per unit time that the process crosses the level zero from below is
used. Since the scaling of a process does not affect its zero-level crossings, for the process in Eq (1) is
identical to that for the process,

, (8)

It is known that for such a process,

(9)

where  ,   and   are  the  standard  deviations  and  cross-correlation  coefficient  of  y(t)  and  its  time
derivative, at time t. For the process in Eq (9), these are given by,

, (10)
, (11)

, (12)

where . Using Eq (3) and , it’s shown that,

, , (13)

where  is an adjustment factor as described below.  is an implicit function of the filter characteristics
and  and therefore, ,  and . The same is true for .

When a continuous-parameter stochastic process is represented as a sequence of discrete-time points
of equal intervals , the process effectively loses its content beyond a frequency approximately equal to
rad/s. This truncation of high-frequency components results in undercounting of level crossings. The
undercount per unit time, denoted as r, is a function of  as well as the frequency characteristics of the
process. So, r is a function of ,  and . Approximate expressions for r are,

  when, (14)
 when, (15)

Since  digitally  recorded  accelerograms  are  available  only  in  the  discretized  form,  the  count
underestimates the true number of crossings of the target accelerogram by the factor  per unit time.
Hence, to account for this effect, we must multiply the rate of counted up-crossings by the factor 1/.
However,  depends on the predominant frequency and bandwidth of the accelerogram. So, it is more
convenient to adjust the theoretical mean up-crossing rate (the first term inside the square brackets in
Eq (7)) by multiplying it by the factor. In order to solve Eq (7), the filter damping ratio, which controls
the bandwidth of the process is selected. Corresponding  and  are calculated. The value of  which best
fits the target is chosen.

STOCHASTIC SIMULATION OF GROUND MOTIONS



A probabilistic method to generate an ensemble of artificial earthquake ground motions based on the
stochastic  ground motion model  described earlier  is  proposed.  A database of  recorded earthquake
ground motions is created. In the next step, the nine parameters required to depict a particular ground
motion is found out for all the ground motions in the database. Probability distributions are created for
the parameters of all the earthquakes in the database. Now, the parameters required by the stochastic
ground motion model to simulate ground motions are obtained from the distributions. Monte Carlo
simulations are used to generate an ensemble of ground motions.

A database of recorded earthquake accelerograms is created. The earthquakes are selected arbitrarily.
Earthquakes with intensity varying from moderate to high that have occurred throughout the world in
the past century are chosen. The chosen earthquakes have occurred on different site conditions and
have  different  characteristics.  Earthquake  data  are  collected  from reliable  sources.  Details  of  the
earthquakes in the database is given in Jacob (2010).

Determination of Parameters

The nine parameters of the stochastic ground motion model are found out for each of the earthquakes
in the database. The two additional parameters that are required are the time duration Tn and the time
steps Δt. Tn is known from the time history and Δt is taken as 0.02 sec for all the earthquakes. As the
temporal  and  spectral  non-stationarities  are  separable  in  the  considered  stochastic  ground motion
model,  the  parameters  of  the  modulating  function  and the  parameters  of  the  filter  are  found out
separately. The results are shown for one accelerogram. The accelerogram chosen is the October 18 th,
1989 Loma Prieta earthquake's 90 component recorded at Los Gatos Presentation Centre.

Parameters in the modulating function

The six parameters required for the modulating function can be obtained by solving Eq. (6) by using
an optimization technique. The minimum of the unconstrained multivariable function in Eq. (6) is
obtained by using Nelder-Mead simplex algorithm (Wright, 1998). A MATLAB code is developed for
this purpose. Figure 1 compares the two energy terms. It is seen that the fit is good at all the time.
points. The error is minimised. The parameters obtained after optimization for , , , ,  and  are 0.072932
sec, 8.0154 sec, 12.88 sec, 0.16308g, 0.80585 sec-1 and 0.44846, respectively.

Figure 1. Cumulative energies in the target accelerogram and the fitted model

Parameters in the filter function

Using the same method of optimization mentioned before, the parameters in the filter are obtained by
solving Eq (7). To solve Eq (7), first a value of ζf is assumed. ζf is considered to be constant for the
entire duration of the earthquake. After obtaining the values of  ω0 and  ωn, separate optimization is
done by minimizing the difference between the cumulative count of negative maxima and positive
minima of the target and the model. The values of ω0 and ωn are kept unchanged as it is found that



there is no big variation. Now, the exact value of  ζf is known. The values of  ω0 and  ωn are found
corresponding to the final ζf . For the considered accelerogram it is found to be 0.8. Shown in Figure 2
is the cumulative count of negative maxima and positive minima as a function of time for the Loma
Prieta, 1989 record as well as the estimated values of the same quantity of the model with damping
ration  ζf =  0:8.  The  slope  of  these  lines  should  be  considered  as  the  instantaneous  measure  of
bandwidth.  The  values  of  ζf,  ω0 and  ωn are  found  to  be  0.8,  30.297  rad/sec  and 10.075  rad/sec
respectively. Shown in Figure 3 is the cumulative number of zero-level up-crossings as a function of
time for the Loma Prieta, 1989 record as well as the estimated values of the same quantity of the
model. It is seen that the fit is good at all the time points.

Figure 2. Cumulative count of negative maxima and positive minima

Figure 3. Cumulative number of zero-level up-crossings in the target accelerogram and model

Simulation of a Target Accelerogram

After finding out all the parameters, an accelerogram can be simulated by using the process described
earlier. Simulated accelerogram has similar characteristics but it will not be an exact replica of the
target accelerogram. The target accelerogram and a simulation are shown in the Figure 4. To get more
accurate simulations, the damping ratio of the filter  ζf should be considered as varying at  various
intervals of time. For simplicity, the damping ratio of the filter ζf is considered as constant throughout
the entire duration of the earthquake. Since we had described the ground acceleration as a filtered
white noise process which has a non-zero spectral density at zero frequency, the integral of the process
(the ground velocity or displacement) has infinite spectral density at zero frequency. Because of this
property, the variances of the velocity and displacement processes keep on increasing even after the
acceleration has vanished. This is contrary to (baseline- corrected) accelerograms, which have zero



residual velocity and displacement at the end of the record. To overcome this problem, it is necessary
to adjust the low frequency content of the stochastic model using a high-pass filter. This is not done in
the present work.

Figure 4. Target accelerogram and a simulation using the fitted model

Distribution of Parameters

After  identifying  the  model  parameter  values  by  fitting  to  each  recorded  ground  motion  in  the
database, a probability distribution is assigned to the sample of values of each parameter. Now, there
are 100 sets of parameters representing the 100 earthquakes in the database. The time steps Δ t is kept
constant for all the 100 earthquakes. Distribution models are assigned to each of the 10 parameters. It
is found that the data of all the 10 parameters are effectively fitted by β distribution. Figure 5 shows
the normalized frequency diagrams of the fitted model parameters for the entire dataset with the fitted
probability density functions (PDFs) superimposed.



Figure 5: PDF of parameters superimposed on observed normalized frequency diagrams

Generation of an Ensemble of Ground Motions

A cluster of earthquake ground motions can be produced. This can be done by randomly selecting the
parameters of the stochastic ground motion model from the distributions of the particular parameter.
From this pool of samples, sets of parameters which satisfy the conditions specified earlier can be



chosen. Using these sets of parameters, artificial ground motions can be generated. This cluster of
earthquakes represents a completely random choice of ground motions.

When  ground  motions  of  any  specific  characteristic  is  required,  a  small  database  containing
earthquakes of similar characteristics that have occurred already should be collected and the model
proposes can be applied to generate an ensemble of earthquake ground motions.

4. CONCLUSIONS

The probabilistic model developed based on arbitrary recorded earthquakes can be used to study the
response  of  structures  under  random  earthquake  excitations.  When  studies  using  specific
characteristics of earthquakes such as site conditions, fault type, etc. are to be done, the model can be
easily applied by using a suitable database. Since the model is based on actual recorded earthquakes,
ground motions corresponding to actual characteristics of the earthquake can be reproduced. 

An  extensive  database  with  earthquakes  with  specific  characteristics  like  fault  type,  site
characteristics, etc. can be developed. The model developed can be used to generate an earthquake of
desired  qualities.  The  predictive  equations  used  to  predict  the  earthquake  characteristics  for  a
particular  site  can  be  combined  with  the  ground  motion  model  to  produce  a  set  of  earthquakes
pertaining to that site. By doing this, it will be possible to generate a ground motion for a particular
site with an associated probability of occurrence of which will be very useful for design engineers.
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