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Abstract

One of the emerging tools for protecting structures from the damaging effects of

earthquakes is the use of isolation systems. Seismic isolation is achieved via inserting

flexible isolator elements which lengthens the vibration period and increase energy

dissipation. This study investigates the stochastic response of a base-isolated build-

ing considering the uncertainty in the characteristics of the earthquakes. For this

purpose a probabilistic ground motion model, for generating artificial earthquakes

is developed. The model is based upon a stochastic ground motion model which has

separable temporal and spectral non-stationarities. A database of recorded earth-

quake ground motions is created. The parameters required by the stochastic ground

motion model to depict a particular ground motion are found out for all the ground

motions in the database. Probability distributions are created for all the parameters.

Using Monte Carlo simulations the parameters required by the stochastic ground

motion model to simulate ground motions are obtained from the distributions and

ground motions. A bilinear model of the isolator described by its characteristic

strength, post-yield stiffness and yield displacement is used and the stochastic re-

sponse is calculated by using an ensemble of generated earthquakes. A parametric

study is done for the various characteristics of the isolator. Reliability analysis is

carried out on the base-isolated structure. It is found that base isolation is very

effective for more than 99 percent of the earthquakes generated.

Keywords : Base Isolation, Stochastic Response, Ground Motion Model, Arti-

ficial Earthquakes, Bilinear Model, Reliability
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Chapter 1

Introduction

1.1 Base Isolation

Base isolation, also known as seismic or base isolation system, is a collection of

structural elements which should substantially decouple a superstructure from its

substructure resting on a shaking ground thus protecting a building or non-building

structure’s integrity.

Base isolation intends to decouple the structure from seismic ground motion,

minimizing, simultaneously, the interstorey deformations and the floor accelerations

by interposing elements of high axial and low horizontal stiffness between the struc-

ture and the foundation.

Base isolation is the most powerful tool of the earthquake engineering pertain-

ing to the passive structural vibration control technologies. It is meant to enable a

building or non-building structure to survive a potentially devastating seismic im-

pact through a proper initial design or subsequent modifications. In some cases,

application of base isolation can raise both a structure’s seismic performance and its

seismic sustainability considerably. Contrary to popular belief base isolation does

not make a building earthquake proof.

Even though the concept of base isolation has been introduced from the begin-

ning of the 19th century, it has been extensively studied and applied to engineering

1



1.1. Base Isolation

practice only during the last 25 years. Although there are various systems, base

isolation techniques follow two basic approaches.

1.1.1 Elastomeric systems

In this approach, the isolation system introduces a layer of low lateral stiffness

between the structure and its foundation. Due to the introduction of this layer,

the structure has a natural period that is longer than its fixed base natural period.

This reduces the earthquake induced force in the structure, but the deformation is

increased due to the deformation in the isolation system.

Figure 1.1: Photo of a bearing system
with all the elements. Source: [1]

Figure 1.2: Photo showing deformed
shape of a isolator. Source: [2]

The most commonly used systems of this type use short, cylindrical bearings

with alternating layers of steel and hard rubber. Interposed between the base of

the structure and the foundation, these laminated bearings are strong and stiff un-

der vertical loads but very flexible under lateral forces. Since the natural damping

of rubber is low, additional damping is usually provided by means of a mechan-

ical damper. These can be lead plugs inside the bearing, steel coils or hydraulic

dampers. These metallic dampers provide energy dissipation through yielding, thus

non-linearity is introduced in the system.

Figure 1.1 and Figure 1.2 show the photos of a bearing system with all the

elements and deformed shape of a laminated rubber bearing (LRB).

2



Chapter 1. Introduction

1.1.2 Sliding systems

This system uses rollers or sliders in between the base of the structure and the foun-

dation. The shear force transmitted to the structure across the isolation interface

is limited by keeping the coefficient of friction as low as practical. But the friction

should be sufficiently high to sustain high wind forces and minor earthquakes, this

reduces the isolation effect.

 3 

 
 

Figure 1.2 Design spectrum and the shift of spectral ordinates for an isolated structure. 

 

 

Various isolators have been manufactured with the similar objective of providing 

a period shift and additional energy dissipation to structures.  Isolators can be classified 

as sliding and elastomeric (Taylor and Igusa 2004; AASHTO 1999).  Among others, two 

isolator types that are representative of sliding and elastomeric systems are the Friction 

Pendulum System (FPS) and the Lead-Rubber Bearings (LRB), respectively.  This study 

focuses on the seismic response of bridges with emphasis on the FPS.  The mechanism of 

the FPS is primarily based on its concave geometry and the surface properties.  The 

supported structure is administered into a pendulum motion as the isolators 

simultaneously glide on its concave surfaces and dissipate hysteretic energy via these 

frictional surfaces (Dicleli and Mansour 2003).   

 

 

Figure 1.3: Sketch of a sliding system.
Source: [3]

Figure 1.4: Sketch of a ball bearing.
Source: [1]

In this type of isolation system, the sliding displacements are controlled by high

tension springs or laminated rubber bearings, or by using concave dish of rollers.

These mechanisms which provide a restoring force, otherwise unavailable in this

system, help in bringing the structure back to its equilibrium. The dynamics of

structures on this type of isolation system is highly complicated as the slip process

is intrinsically non-linear.

Figure 1.3 and Figure 1.4 show the sketch of a sliding system with all the elements

and a sliding type isolator

1.2 Stochastic Response

Generally, structural analysis is based on a deterministic concept. Observed vari-

ations in loading conditions, material properties, geometry, etc. are taken into

account by either selecting extremely high or low or average values, respectively, for

representing the parameters. Hence, by this, uncertainties inherent in almost every

3



1.2. Stochastic Response

analysis process are considered just intuitively. Observations and measurements of

physical processes, however, clearly show their random characteristics.

Structural engineering design is filled with uncertainties, some of which are obvi-

ous and some of which many engineers may never have considered. Uncertainty can

be separated into two categories: Aleatory, related to luck or chance, and epistemic,

related to knowledge [4].

Statistical and probabilistic procedures provide a sound frame work for a rational

treatment of analysis of these uncertainties. Moreover, there are various types of

uncertainties. The entire spectrum of uncertainties is also not known. In reality,

neither the true model nor the model parameters are deterministically known [5].

7 Rational Treatment of Uncertainties 41

the variance, are estimated by statistical procedures. For time variant or sta-
tionary processes, the probability density refers not only to one time instant,
but to other times as well i.e. to a family of random variables X(t1), X(t2)
more simply denoted by X(t). Again, if the distribution of X(t1), X(t2) are
of Gaussian characteristics, such a process is denoted as Gaussian stochastic
process, see Sec. 7.1. Typical examples are wind, wave, earthquake records,
etc.

xn

xn

x1

x1

x2

x2

rm

rm

r1

r1

r2

r2

f(xj) f(ri)

Input-

Parameter Space

Response

Space

Deterministic
Conception

Concept
including

Uncertainties

Probability

Distributions

Fig. 7.2. Deterministic Conception versus Concept including Uncertainties

Finite element models generally contain quite a large number of param-
eters like elasticity constants, geometry specifications, loading parameters,
boundary conditions, etc., of which most values are not perfectly known. It
was already stated above, that the so called “true” parameters can, if at all,
be determined in exceptional cases only, i.e. by experiments. Hence the values
used in deterministic finite element analysis are so called nominal values which
deviate to a certain extent from the unknown true value. The uncertainties
within the input parameters naturally result in uncertainties of the output,
i.e. the response. Since response predictions are the central goal of any finite
element analysis, and all predictions depend more or less on the uncertain
input parameters, a rational approach has to include these unavoidable un-
certainties.

Figure 1.5: Deterministic concept versus stochastic concept. Source: [5]

In the deterministic concept, a single value is considered to be enough to repre-

sent a particular variable. It is in fact a great number of values, each associated with

a certain probability of occurrence of a particular value, which is needed for a realis-

tic description. Hence, the variables in their basic form may be described as random

variables. The associated uncertainty are quantified by probability measures such

as probability density functions.

Figure 1.5 explains the comparison between the deterministic concept and the

stochastic concept.
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Chapter 1. Introduction

1.2.1 Monte Carlo simulations

The evaluation of the stochastic response by the Monte Carlo simulation technique

is a powerful method for highly non-linear systems as well as for systems where the

input is modeled by large number of random variables [5].

Figure 1.6: Stochastic analysis based on Monte Carlo simulation. Source: [5]

Figure 1.6 explains the basic principles of Monte Carlo sampling, where the

laws of statistics are used to derive information on the variability of the response.

By using a suitable random number generator, statistically independent samples

of the input which follow the prescribed probability distributions of the uncertain

parameters are generated. Let the system be described by the operator Q, so that

a set of random input variables collected in a vector x is mapped to the output y,

Qx = y (1.1)

In the simplest form of the Monte Carlo simulation technique, denoted as direct

Monte Carlo simulation, for each generated sample of the input x(i) the corre-

sponding output y(i) is calculated. Hence, the input distribution f(x1, x2, ..., xm) is

represented according to statistical laws by a finite number of independent samples

x(i)ni=1. Each vector x(i) specifies for each uncertain parameter a deterministic dis-

crete value and consequently defines deterministically the response which might be

represented by the vector as follows

5



1.3. Ground Motion Modeling

y(i) = Qx(i) (1.2)

Hence, traditional deterministic analyses can be used to provide the mapping

given by (1.2) between input and response.

In the simplest case, it might be justified to assume that all uncertainties are

independent. Such an assumption is reasonable as long as this assumption does not

contradict experience and physical properties.

1.3 Ground Motion Modeling

1.3.1 Characteristics of ground motion

Ground motion at a particular site due to earthquakes is influenced by source, travel

path and local site conditions. The first relates to the size and source of the source

mechanism of the earthquake. The second describes the path effects of the earth as

the wave travels from the source to the site. The third describes the effects of the

upper hundreds of meters of rocks and soil and the surface topography at the site.

It is well known that earthquake ground motions are nonstationary in both time

and frequency domains. Temporal nonstationarity refers to the variation in the in-

tensity of the ground motion in time. Spectral nonstationarity refers to the variation

in the frequency content of the motion in time. Although temporal nonstationarity

can be easily modeled by multiplying a stationary process by a time function, spec-

tral nonstationarity is not so easy to model. However, both effects are important,

particularly in the non-linear response analysis.

There are two types of uncertainties in ground motion prediction, epistemic and

aleatory. Epistemic uncertainty is attributed to the incomplete knowledge and data

about the physics of earthquake phenomenon. Aleatory uncertainty is due to the

6



Chapter 1. Introduction

fact that the future earthquakes are unpredictable. In principle, the former can be

reduced by accumulating additional information but the latter cannot be reduced.

1.3.2 Need for ground motion modeling

The modeling, analysis and simulation of ground motion signals is of crucial im-

portance in studying and improving the behaviour of structures under earthquake

excitation and has thus attracted significant attention during the past several years.

The growing interest in performance-based earthquake engineering (PBEE) in re-

cent years has further increased the need for stochastic modeling of ground motions.

The PBEE analysis typically considers the entire spectrum of structural response,

from linear to grossly non-linear and even collapse. For such an analysis, realistic

characterization of the ground motion is essential. In the current PBEE practice,

usually recorded ground motions are employed, which are then scaled to various

levels of intensity. This approach suffers from scarcity of recorded ground motions

for specified earthquake characteristics. Stochastic ground motion models provide

an alternative for use in PBEE in lieu of or in conjunction with recorded ground

motions.

1.4 Objectives and Scope

1.4.1 Objectives of the study

The objective of this study is to determine the stochastic response of an isolated

building under earthquake excitations with an emphasis on the uncertainty in the

earthquake loading. The research tasks to accomplish these objectives are the fol-

lowing:

1. Create a database of earthquakes and fit all the earthquakes to a stochastic

ground motion model.

7



1.5. Thesis Outline

2. Determine the probability density function of all the parameters required to

generate an artificial ground motion of required statistical characteristics.

3. Generate a large number of artificial ground motions. Perform stochastic re-

sponse analysis and parametric studies.

4. Perform reliability analysis on the response of the base-isolated building.

1.4.2 Scope of the study

All the parameters of the structure and isolator such as mass, stiffness, damping,

etc are considered to be deterministic. Only the uncertainty in the earthquakes is

considered for finding the stochastic response.

The probabilistic model created for the earthquake loading is random in nature.

There is no established connection to specific characteristics of the earthquake such

as source, site conditions, etc.

1.5 Thesis Outline

The content of the dissertation is organized into the following chapters:

Chapter 2 provides a literature review on topics of interest for this study. Partic-

ular emphasis is given to the stochastic modeling of ground motion, base isolation,

stochastic response and reliability analyses. A critical assessment of the current-

state-of-the-art is presented.

Chapter 3 deals with the deterministic response of an isolated building structure

under earthquake excitation. The modeling of the structure and isolator, governing

equations of motion, solution procedure and an example are presented.

Chapter 4 explains the stochastic ground motion model selected for this study.

Description of the various steps involved in generating a ground motion and identi-

fying the parameters of the model is presented.

8



Chapter 1. Introduction

Chapter 5 describes about the database of the earthquakes. The identification

of the parameters for the earthquakes in the database and their probability density

function is described.

Chapter 6 presents a stochastic reponse analysis, parametric studies, study of

the extreme response quantities and the reliability analysis of the response.

Chapter 7 presents a summary of the research, major conclusions drawn from

this study, and recommendation for future research.

9
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Chapter 2

Literature Review

2.1 Introduction

The introduction of seismic isolation as a practical tool has provided a rich source of

literature on experimental and theoretical work, both in the dynamics of the isolated

structural systems and in the mechanics of the isolators. Synthetic ground motions

have been of interest in the field of earthquake engineering for many years. There

is a lot of literature related to ground motion modeling. This chapter presents a

summary of the previous studies that address the modeling of ground motions and

various studies on base isolated structures.

2.2 Base Isolation

Reviews presented by Kelly [6], Buckle and Mayes [7], Ibrahim [8] and Jangid and

Datta [9] summarize much of the literature on theoretical aspects of seismic isolation,

testing programmes and isolation systems which have been used in buildings. These

reviews describe the characteristics of the various implemented systems.

Matsagar and Jangid [10] studied the influence of isolator characteristics on

the response of base-isolated structures by considering the isolator to have bilinear

11



2.3. Ground Motion

hysteretic and equivalent linear elasticviscous behaviors. This study elaborates on

the use of isolators with different model types and parameters.

Sharma and Jangid [11] studied the effect of high initial stiffness in the bilinear

model of the isolator on the behaviour of base-isolated structures. They concluded

that the floor accelerations and interstorey drifts are increasing significantly with

the increase of the initial stiffness of the isolation system.

2.3 Ground Motion

There are two types of stochastic ground motion models: models that describe the

random occurrence of fault ruptures at the source and propagation of the resulting

seismic waves through the ground medium (source based models) and models that

describe the ground motion for a specific site by fitting to a recorded motion with

known earthquake and site characteristics (site based models). A review of source

based models is presented by Zerva [12].

By using a site based stochastic model, one is able to generate artificial ground

motions, which have statistical characteristics similar to those of the target ground

motion. A large number of site based models have been proposed in the past. A

review is presented by Shinozuka and Deodatis [13] and more recently by Conte and

Peng [14].

Kiureghian and Crempien [15] proposed an evolutionary random process model

for describing the earthquake ground motion. The model is composed of individually

modulated component stationary processes, each component representing the energy

in the process in a narrow band of frequencies. The model accounts for both temporal

and spectral nonstationarity of the motion.

A probabilistic ground motion model was proposed by Papadimitriou [3] which is

capable of capturing, with at most nine parameters, all those features of the ground

acceleration history which have an important influence on the dynamic response

of linear and non-linear structures, including the amplitude and frequency content
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nonstationarities of the shaking. The model is based on bayesian probabilistic frame-

work.

A fully nonstationary stochastic model for strong earthquake ground motion

was developed by Rezaeian and Kiureghian [16]. The model employs filtering of a

discretized white-noise process. Nonstationarity is achieved by modulating the in-

tensity and varying the filter properties in time. The formulation has the important

advantage of separating the temporal and spectral nonstationary characteristics of

the process, thereby allowing flexibility and ease in modeling and parameter esti-

mation.

2.4 Stochastic Response

Schüeller and Pradlwarter [17] presented a review on the various methods available

for uncertainty analysis of complex structural systems. It is shown that advanced

Monte Carlo simulation (MCS) procedures is the most versatile approach.

Er and Iu [18] studied the stochastic response of a rigid structure connected

to a foundation with coulomb friction-type base isolation subjected to stationary

Gaussian white noise type ground excitations. Analytical solutions were compared

to MCS results.

Su and Ahmadi [19] did a study on the responses of a rigid structure with a

frictional base isolation system subjected to random horizontal-vertical earthquake

excitations. The ground accelerations were modelled by segments of stationary

and nonstationary Gaussian white noise and filtered white noise processes. The

differential equation governing the covariance matrix was solved and the results

were compared with those obtained by a series of Monte-Carlo digital simulations

and reasonable agreement was observed.

Analytical solutions for the stochastic response of practical sliding systems were

proposed by Constantinou and Papageorgiou [20] and the results were verified by

extensive Monte Carlo simulations.

13
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Pradlwarter et al. [21] did a study on the application of controlled Monte Carlo

simulation for studying the effect of a two dimensional hysteretic, friction based

device assembled at particular locations throughout the structure.

In a study by Yeh and Wen [22], a stochastic model of ground excitation was pro-

posed in which both intensity and frequency content are functions of time. Responses

of single-mass inelastic systems and three-story space frames, with or without de-

terioration, under the nonstationary biaxial ground excitation were investigated via

the equivalent linearization method and Monte Carlo simulations.

Alhan and Gavin [23] presented a paper on reliability analysis of a four storey

structure representing a critical facility with an isolation floor, by including uncer-

tainties such as isolation system characteristics, eccentricity in the superstructure,

and ground motion characteristics. The Monte Carlo simulation technique was used

to determine probability distributions and failure probabilities.

2.5 Summary

The bilinear behaviour of the isolator can be effectively used to model most of the

isolation systems in practice. Stochastic ground motion models which consider both

the spectral and temporal non stationarity effectively simulates recorded ground

motions. There are few such models.

The uncertainty in the characteristics of the earthquake causes uncertainty in

parameters of the ground motion model. A probabilistic model which takes into

account the uncertainty in the parameters representing recorded earthquakes in the

stochastic ground motion model has not been proposed. This necessitates the need

for a probabilistic ground motion model which takes into account, the uncertainty

of the characteristics of the earthquakes.

Previous studies [17] - [23] have demonstrated that Monte Carlo simulation is an

effective method in obtaining stochastic response statistics. Studies show that the

results have reasonable agreement to analytical solutions. Monte Carlo simulation is

14
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a convenient and accurate method for calculating the probability of failure. Monte

Carlo simulation can be used for analyses where analytical reliability methods such

as First Order Reliability Methods (FORM), Second Order Reliability Methods

(SORM) and Response Surface Methods (RSM) are difficult to use.

15



16



Chapter 3

Deterministic Response of an

Isolated Building

3.1 Introduction

The procedure used to find the deterministic response of a base-isolated building

under earthquake excitations is described in this chapter by considering a numerical

example. The modeling involved, solution procedure and results are detailed below.

3.2 Modeling

Lumped mass modeling is done for the superstructure and the isolator. The effect

of rotation in the structure and isolator is not taken into consideration.

3.2.1 Superstructure

The base-isolated building is modeled as a shear type structure mounted on isolation

systems with one lateral degree-of-freedom at each floor. Figure 3.1 shows the

idealized mathematical model of the five storey base-isolated building considered

for the present study.
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3.2. Modeling

Figure 3.1: Mathematical model of the five storey base-isolated building

Following assumptions are made for the structural system under consideration:

1. The superstructure is assumed to remain within the elastic limit during the

earthquake excitation.

2. The floors are assumed to be rigid in its own plane and the mass is lumped at
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each floor level.

3. The columns are inextensible and weightless providing the lateral stiffness.

4. The system is subjected to a horizontal component of the earthquake ground

motion in one direction.

5. The effect of soil structure interaction is neglected.

xj is the relative floor displacement with respect to the isolator at the jthfloor,

mj is the floor mass at the jth th floor, kj is the stiffness of the jth th floor, xb is the

displacement of the isolator and mb is the mass of the isolator.

3.2.2 Isolators

For the present study, the force-deformation behaviour of the isolator is modeled

as non-linear hysteretic represented by the bilinear model.The model is shown in

Figure 3.2.

The non-linear force-deformation behaviour of the isolation system is modeled

through the bilinear hysteresis loop characterized by three parameters namely:

1. Characteristic strength, Q

2. Post-yield stiffness, kb and

3. Yield displacement, q.

The bilinear behaviour is selected because this model can be used for most of the

isolation systems used in practice. The characteristic strength, Q is related to the

yield strength of the lead core in the elastomeric bearings and friction coefficient of

the sliding type isolation systems. The post-yield stiffness of the isolation system,

kb is generally designed in such a way to provide the specific value of the isolation

period, Tb expressed as

Tb = 2π

√
M

kb
(3.1)
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Figure 3.2: Mathematical model of the isolator

Where M = (mb +
∑5

j=1mj) is the total mass of the base-isolated structure.

The characteristic strength, Q is mathematically related to the damping ratio, ζb by

the following equation [24].

ζb =
4Q(D − q)

2πkbD2
(3.2)

Here D is the design displacement.

Thus, the bilinear hysteretic model of the base isolation system can be charac-

terized by specifying the three parameters namely Tb, Q and q.

3.3 Governing Equations of Motion

The general equations of motion for the super structure-isolator model illustrated

in Figure 3.1 can be expressed as

MẌTot(t) + CẊ(t) +KX(t) = 0 (3.3)
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Here X = {xj}T is the column vector of relative structural displacements with

respect to the isolator and XTot =
{
xTot
j

}T
is the column vector of total structural

displacements. M is the mass matrix of structure, C is the damping matrix of

structure and K is the stiffness matrix of structure.

xTot
j = xj + xb + xg (3.4)

Where xg is the displacement of the ground due to the earthquake. xb is the dis-

placement of the isolator.

Now for the five storey base isolated building the governing equations of motions

are given by

MẌ(t) + CẊ(t) +KX(t) = −Mẍg (3.5)

where

M =



m1 0 0 0 0 m1

0 m2 0 0 0 m2

0 0 m3 0 0 m3

0 0 0 m4 0 m4

0 0 0 0 m5 m5

0 0 0 0 0 mb


(3.6)
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3.4. Solution Procedure

K =



k1 −k1 0 0 0 0

−k1 k1 + k2 −k2 0 0 0

0 −k2 k2 + k3 −k3 0 0

0 0 −k3 k3 + k4 −k4 0

0 0 0 −k4 k4 + k5 −k5

0 0 0 0 −k5 k5 + kb


(3.7)

M = {m1,m2,m3,m4,m5,mb}T (3.8)

X = {x1, x2, x3, x4, x5, xb}T (3.9)

The damping matrix of the superstructure, C is not known explicitly. It is

constructed by assuming the modal damping ratio for superstructure, which is kept

constant.

3.4 Solution Procedure

Classical modal superposition technique cannot be employed in the solution of equa-

tions of motion here because (i) there is a difference in the damping in isolation sys-

tem compared to the damping in the superstructure and (ii) the force-deformation

behavior for the isolation systems considered is non-linear. Therefore, the equations

of motion are solved numerically using Newmark’s method of step-by-step integra-

tion [25]; adopting linear variation of acceleration over a small time interval of ∆t.

The response quantities of interest such as acceleration, velocity and displace-

ment at any degree of freedom, force in the isolator are calculated at each time

interval. The force in the isolator is calculated by using Wen’s model [26] from the
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non-linear force-deformation diagram. A FORTRAN program is developed for this

purpose.

3.5 Numerical Example

To find the deterministic response of the isolated structure, a recorded earthquake

accelerogram is considered. The response is calculated and the results are plotted.

The response quantities of interest are the top floor absolute acceleration and relative

isolator displacement. The above response quantities are chosen because the floor

accelerations developed in the superstructure are proportional to the forces exerted

due to earthquake ground motion and the bearing displacements are important for

the design of isolation systems.

Figure 3.3: Time history of the Loma Prieta, 1989 earthquake
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3.5. Numerical Example

Table 3.1: Summary of parameters of the superstructure

S. No. Parameter Value

1 Ratio of floor mass 1:1:1:1:1

2 Ratio of floor stiffness 2:3:4:5:6

3 Damping Ratio of each floor 0.02

4 Time period of the superstructure, Ts 0.5 sec

3.5.1 Ground Motion

The earthquake motion selected for the study is N00E component of 1989 Loma

Prieta earthquake recorded at Los Gatos Presentation Center. The peak ground

acceleration (PGA) of Loma Prieta earthquake is 0.57g. The time history of the

earthquake ground motion selected is shown in Figure 3.3

3.5.2 Structure and Isolator Parameters

The various parameters of the superstructure and the isolator considered for this

example is described in this section. The summary of parameters considered for the

super structure is given in Table 3.1 and the summary of parameters considered for

the isolator is given in Table 3.2. The floor mass of each floor of the structure is

considered to be equal. The stiffness is considered is such a way that the top floor

are less stiffer than the bottom floors. The stiffness increases proportionally from

top to bottom. Approximate time period of a five storey building is considered. The

damping ratio of the superstructure is taken as 0.02 and kept constant for all modes

of vibration. The inter-story stiffness of the superstructure is adjusted such that a

specified fundamental time period of the superstructure, Ts is achieved. The mass

of the isolator is considered to be equal to that of a floor.
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Table 3.2: Summary of parameters of the isolator

S. No. Parameter Value

1 Ratio of floor mass to isolator mass 1:1

2 Damping Ratio of the isolator, ζb 0.1

3 Time period of the isolator, Tb 2.0 sec

4 Design Displacement, D 53.61 cm

5 Yield displacement, q 2.5 cm

3.5.3 Response Quantities

The response of the structure under the excitation of the recorded ground motion

of Loma Prieta, 1989 earthquake is plotted. The time variation of the top floor

acceleration of the base-isolated structure and the structure with a fixed base is

shown in Figure 3.4. The effectiveness of base isolation is evident as we can see a

significant reduction in the quantity of the peak top floor acceleration. The peak top

floor acceleration of the fixed base structure is 2.92g and that of the base-isolated

structure is 0.66g. The time variation of the displacement in the base-isolator is

shown in Figure 3.5. The peak isolator displacement is 42.57 cm.
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3.5. Numerical Example

Figure 3.4: Time variation of top floor acceleration

Figure 3.5: Time variation of isolator displacement
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Chapter 4

Stochastic Ground Motion Model

4.1 Introduction

The stochastic ground motion model used in the present study is described in detail

in this chapter. This fully nonstationary stochastic ground motion model uses filter-

ing of a discretized white-noise process. Nonstationarity is achieved by modulating

the intensity and varying the filter properties in time. The various steps involved in

this model is described in this chapter.

4.2 Advantages of the Model

The stochastic ground motion model selected considers both the temporal and spec-

tral nonstationarities. The selected model has the following advantages:

1. The model has a small number of parameters, which control the temporal

and spectral nonstationary characteristics of the simulated ground motion and

can be easily identified by matching with similar characteristics of the target

accelerogram.

2. The temporal and spectral nonstationary characteristics are completely sepa-

rable, facilitating identification and interpretation of the parameters.
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4.3. Modulated Filtered White Noise Process

3. There is no need for sophisticated processing of the target accelerogram, such

as the Fourier analysis or estimation of evolutionary power spectral density.

4. The filter model provides physical insight and its parameters can be related

to the characteristics of the earthquake and site considered.

5. Simulation of sample functions is simple and requires little more than genera-

tion of standard normal random variables.

4.3 Modulated Filtered White Noise Process

The modulated filtered Gaussian white noise process is obtained by time modulating

the stationary response of a linear filter subjected to a Gaussian white noise excita-

tion. Let the linear filter be defined by its impulse response function (IRF) h(t, θ),

where θ denotes a set of parameters used to shape the filter response. Specifically,

θ may include the natural frequency and damping of the filter, which control the

predominant frequency and bandwidth of the process. We assume that the filter is

causal so that h(t, θ) = 0 for t < 0, and that it is stable, so that
∫∞
−∞ h(t, θ)dt <∞

which also implies limt→∞ h(t) = 0. We also assume that h(t, θ) is at least once

differentiable. This requires h(t, θ) to start from a zero value at t = 0 and not have

any discontinuities.

The modulated filtered Gaussian white noise process can be expressed in the

form [16]

x(t) = q(t)

[
1

σh

∫ t

−∞
h(t− τ, θ)ω(τ)dτ

]
(4.1)

where q(t) is the deterministic, non-negative modulating function, ω(t) denotes the

Gaussian white noise process, τ is the time of application of the pulse and σh is the

standard deviation of the filtered white noise process represented by the integral

inside the square brackets.
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Since the response of a stable filter to a white noise excitation becomes stationary

after sufficient time, and since the white noise process is assumed to have started in

the infinite past (the lower limit of the integral is −∞), the filter response at any

finite time point is stationary and, therefore, σh is a constant. One can easily show

that

σ2
h = 2πS

[∫ t

−∞
h2(t− τ, θ)dτ

]
(4.2)

where S is the intensity of the white noise process.

The modulated filtered white noise process defined by (4.1) lacks spectral non-

stationarity.

4.4 Fully Nonstationary Filtered White Noise Pro-

cess

To achieve spectral nonstationarity with the filtered white-noise process the filter

parameters are made to vary with time. Generalizing the form in (4.1), we define

the fully nonstationary filtered white-noise process as

x(t) = q(t)

[
1

σh(t)

∫ t

−∞
h[t− τ, θ(τ)]ω(τ)dτ

]
(4.3)

where the parameters θ of the filter are now made dependent on the time of appli-

cation of the load increment.

Naturally, the response of such a filter may not reach a stationary state. There-

fore, the standard deviation σh(t) of the process defined by the integral in (4.3) in

general is a function of time. One can easily show that

σ2
h = 2πS

[∫ t

−∞
h2[t− τ, θ(τ)]dτ

]
(4.4)
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The modulating function q(t) used to model ground motions usually starts from

a zero value and gradually increases with time. Furthermore, the damping value of

the filter used to model ground motions is usually large so that the IRF h[t−τ, θ(τ)]

quickly diminishes with increasing t − τ . Under these conditions, the lower limit

of the integral in (4.3) and (4.4), which is −∞, can be replaced with zero (or

a finite negative value) without much loss of accuracy. This replacement offers

computational convenience in the discretization of the process.

4.5 Discretization of the Nonstationary Process

In order to digitally simulate a stochastic process, discretization is necessary. Dis-

cretization is done in the time domain. The duration of the ground motion is dis-

cretized into a sequence of equally spaced time points ti = i ×∆t for i = 0, 1, . . . n

where ∆t is a small time step. At a time t, 0 < t < tn, letting
∣∣ t

∆t

∣∣ = k, where

0 ≤ k ≤ n, the process in (4.3) can be expressed as

x(t) = q(t)

[
1

σh(t)

k∑
i=1

∫ ti

ti−1

h[t− τ, θ(τ)]ω(τ)dτ+

1

σh(t)

∫ t

tk

h[t− τ, θ(τ)]ω(τ)dτ

] (4.5)

Assuming h[t − τ, θ(τ)] remains essentially constant during each small time in-

terval ti−1 ≤ t ≤ ti and neglecting the last term, which is an integral over a fraction

of the small time step, we get

x̂(t) = q(t)

[
1

σ̂h(t)

k∑
i=1

h[t− ti, θ(ti)]
∫ ti

ti−1

ω(τ)dτ

]
(4.6)

x̂(t) = q(t)

[
1

σ̂h(t)

k∑
i=1

h[t− ti, θ(ti)]Wi

]
, tk ≤ t < tk+1 (4.7)
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where

Wi =

∫ ti

ti−1

ω(τ)dτ (4.8)

Wi for all i are statistically independent and identically distributed Gaussian random

variables having zero mean and variance 2πS∆t. Introducing the standard normal

random variables ui = Wi√
2πS∆t

, (4.7) can be expressed as

x̂(t) = q(t)

[√
2πS∆t

σ̂h(t)

k∑
i=1

h[t− ti, θ(ti)]ui

]
, tk ≤ t < tk+1 (4.9)

We have superposed hats on two terms in the above expression. The one on

x̂(t) is to highlight the fact that expressions (4.7) and (4.9) are for the discretized

process and employ the approximations involved in going from (4.5) to (4.7). The

hat on σ̂h(t) is used to signify that this function is the standard deviation of the

discretized process represented by the sum inside the square brackets in (4.7), so

that the process inside the square brackets in (4.9) is properly normalized. Since

Wi in (4.7) are statistically independent random variables, one has

σ̂2
h(t) = 2πS∆t

k∑
i=1

h2[t− ti, θ(ti)], tk ≤ t < tk+1 (4.10)

This equation is the discretized form of (4.4).

The representation in (4.9) has the simple form as follows

x̂(t) = q(t)
k∑
i=1

si(t) ui, tk ≤ t < tk+1 (4.11)

where

si(t) =

√
2πS∆t

σ̂h(t)
h[t− ti, θ(ti)] (4.12)
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si(t) =
h[t− ti, θ(ti)]∑k

j=1 h
2[t− tj, θ(tj)]

, tk ≤ t < tk+1, 0 < i ≤ k (4.13)

4.6 Characterization of the Ground Motion Pro-

cess

The intensity of a zero mean, Gaussian ground motion process which is characterized

by its time varying standard deviation is defined by the modulating function q(t).

The frequency content may be characterized in terms of a predominant frequency

and a measure of the bandwidth of the process, as they evolve in time. These

properties of the process are influenced by the selection of the filter, i.e. the form of

the IRF h[t− τ, θ(τ)], and its time-varying parameters θ(τ).

As a surrogate for the predominant frequency of the process, here the mean zero-

level up-crossing rate, ν(0+, t), i.e. the mean number of times per unit time that

the process crosses the level zero from below is used. Since the scaling of a process

does not affect its zero-level crossings, ν(0+, t) for the process in (4.11) is identical

to that for the process

y(t) =
k∑
i=1

si(t) ui, tk ≤ t < tk+1 (4.14)

It is known that for such a process

ν(0+, t) =

√
1− ρ2

yẏ(t)

2π

σẏ(t)

σy(t)
(4.15)

where σy(t), σẏ (t) and ρ2
yẏ(t) are the standard deviations and cross-correlation co-

efficient of y(t) and its time derivative, ẏ(t) = dy(t)
dt

at time t. For the process in
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(4.15), these are given by

σ2
y(t) =

k∑
i=1

s2
i (t) = 1, tk ≤ t < tk+1 (4.16)

σ2
ẏ(t) =

k∑
i=1

ṡ2
i (t), tk ≤ t < tk+1 (4.17)

ρyẏ(t) =
1

σy(t)σẏ(t)

k∑
i=1

si(t)ṡi(t), tk ≤ t < tk+1 (4.18)

where ṡi(t) = dsi(t)
dt

. Using (4.13) and hi(t) = h[t− ti, θ(ti)], it is shown that

ṡi(t) =

[
ḣi(t)−

∑k
j=1 hj(t)ḣj(t)∑k

j=1 h
2
j(t)

hi(t)

]
1√∑k

j=1 h
2
j(t)

, tk ≤ t < tk+1, 0 < i ≤ k

(4.19)

For any differentiable IRF and filter parameter functions, the mean zero-level

up-crossing rate of the process can be computed from (4.15) by use of the relations

in (4.16) to (4.19). Naturally, the fundamental frequency of the filter will have a

dominant influence on the predominant frequency of the resulting process.

4.7 Parameterization of the Model

A modified version of the Housner and Jennings model [27] as stated below is used

as the modulating function.

q(t) =



0 t ≤ T0

σmax

(
t−T0
T1−T0

)2

T0 < t ≤ T1

σmax T1 ≤ t ≤ T2

σmax e
[−α(t−T2)β ] T2 ≤ t

(4.20)
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This model has six parameters T0, T1, T2, σmax, α and β which obey the condi-

tions T0 < T1 < T2, 0 < σmax, 0 < α and 0 < β. T0 denotes the start time of the

process, T1 and T2 denote the start and end times of the strong-motion phase with

root mean square (RMS) acceleration σmax and α and β are parameters that shape

the decaying end of the modulating function.

Any damped single- or multidegree-of-freedom linear system that has differen-

tiable response can be selected as the filter, here

h[t−τ, θ(τ)] =


ωf (τ)√
1−ζ2f (τ)

e[−ζf (τ)ωf (τ)(t−τ)] sin
[
ωf (τ)

√
1− ζ2

f (τ)(t− τ)
]

τ ≤ t

0 otherwise

(4.21)

which represents the pseudo-acceleration response of a single-degree-of-freedom lin-

ear oscillator subjected to a unit impulse, in which τ denotes the time of application

of the pulse. θ(τ) = [ωf (τ), ζf (τ)] is the set of parameters of the filter with ωf (τ) de-

noting the natural frequency and ζf (τ) denoting the damping ratio, both dependent

on the time of application of the pulse. ωf (τ) influence the predominant frequency

of the resulting process, whereas ζf (τ) influence its bandwidth. The predominant

frequency of an earthquake ground motion tends to decay with time. Therefore,

ωf (τ) = ω0 − (ω0 − ωn)
τ

tn
(4.22)

in which tn is the total duration of the ground motion, ω0 is the filter frequency

at time t0 = 0 and ωn is the frequency at time tn. For a typical ground motion,

ωn < ω0. Thus, the two parameters ω0 and ωn describe the time-varying frequency

content of the ground motion.

Further analysis has shown that the linear form in (4.22) adequately characterizes

the frequency variation of most recorded ground motions. The filter damping ζf can

be considered a constant.
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With the above parameterization, the stochastic ground motion model is com-

pletely defined by specifying the forms of the modulating and IRF functions, and

the parameters that define them. Specifically, the six parameters (T0, T1, T2, σmax,

α and β) define the modulating function in (4.20) and the three parameters (ω0, ωn

and ζf ) define the filter IRF in (4.21).

4.8 Parameter Identification

As shown above, the temporal and spectral characteristics of the model are com-

pletely separable. Specifically, the modulating function q(t) describes the evolving

RMS of the process, whereas the filter IRF h[t − τ, θ(τ)] controls the evolving fre-

quency content of the process. This means that the parameters of the modulating

function and of the filter can be independently identified by matching the corre-

sponding statistical characteristics of a target accelerogram.

4.8.1 Identification of parameters in the modulating func-

tion

Let λ = (T0, T1, T2, σmax, α, β) denote the parameters of the modulating function,

so that q(t) = q(t, λ). For a target accelerogram, a(t), we determine λ by matching

the expected cumulative energy of the process, Ex(t) = (1
2
)
∫ t

0
q2(τ, λ)dτ , with the

cumulative energy in the accelerogram, Ea(t) = (1
2
)
∫ t

0
a2(τ)dτ , over the duration of

the ground motion, 0 < t < tn. This is done by minimizing the integrated squared

difference between the two cumulative energy terms, i.e.

λ = arg min
λ

∫ tn

0

[ ∫ t

0

q2(τ, λ)B(τ)dτ −
∫ t

0

a2(τ)B(τ)dτ

]2

dt (4.23)

where B(t) is a weight function introduced to avoid dominance by the strong motion

phase of the record, otherwise, the tail of the record is not well fitted. The function,

B(t) = min

[
[maxt q20(t)]

q20(t)
, 5

]
, where q0(t) is the modulating function obtained in a
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4.8. Parameter Identification

prior optimization without the weight function. The objective function in (4.23),

which was earlier used by Yeh and Wen [22] without the weight function, has the

advantage that the integral
∫ t

0
a2(τ)B(τ)dτ is a relatively smooth function so that

no artificial smoothing is necessary.

As a measure of the error in fitting to the cumulative energy of the accelerogram,

we use the ratio

εq =

∫ tn
0
|Ex(t)− Ea(t)| dt∫ tn

0
Ea(t)dt

(4.24)

The numerator is the absolute area between the two cumulative energy curves and

the denominator is the area underneath the energy curve of the target accelerogram.

4.8.2 Identification of filter parameters

The parameters ω0 and ωn defining the time-varying frequency of the filter (4.22)

and parameters defining its damping ratio ζf control the predominant frequency

and bandwidth of the process. Since these parameters have interacting influences,

ω0 and ωn are first determined while keeping the filter damping, ζf a constant. For

a given ζf , the parameters ω0 and ωn are identified by matching the cumulative

expected number of zero-level up-crossings of the process, i.e.
∫ t

0
ν(0+, τ)dτ with

the cumulative count N(0+, t) of zero-level up-crossings in the target accelerogram

for all t, 0 < t < tn. This is accomplished by minimizing the mean-square error

[ω̂0(ζf ), ω̂n(ζf )] = arg min

∫ tn

0

[∫ t

0

ν(0+, τ)r(τ)dτ −N(0+, t)

]2

dt (4.25)

where r(τ) is an adjustment factor as described below. ν(0+, τ) is an implicit func-

tion of the filter characteristics ωf and ζf and therefore, ω0 , ωn and ζf . The same

is true for r(τ). The calculation of
∫ t

0
ν(0+, τ)dτ is as described in Section 4.6.

When a continuous-parameter stochastic process is represented as a sequence of

discrete-time points of equal intervals ∆t, the process effectively loses its content
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Chapter 4. Stochastic Ground Motion Model

beyond a frequency approximately equal to π
2∆t

rad/s. This truncation of high-

frequency components results in undercounting of level crossings. The undercount

per unit time, denoted r, is a function of ∆t as well as the frequency characteristics

of the process. So r, is a function of ∆t, ωf and ζf . Approximate expressions for r

are

r(τ) =

 1− 0.0005 (ωf (τ) + ζf (τ))− 0.00425ωf (τ)ζf (τ) when ∆t = 0.01s

1− 0.01ζf (τ)− 0.009ωf (τ)ζf (τ) when ∆t = 0.02s

(4.26)

Since digitally recorded accelerograms are available only in the discretized form,

the count N(0+, t) underestimates the true number of crossings of the target ac-

celerogram by the factor r(τ) per unit time. Hence, to account for this effect, we

must multiply the rate of counted up-crossings by the factor 1
r(τ)

. However, r(τ)

depends on the predominant frequency and bandwidth of the accelerogram. So, it

is more convenient to adjust the theoretical mean up-crossing rate (the first term

inside the square brackets in (4.25) by multiplying it by the factor r(τ).

In order to solve (4.25), the filter damping ratio, ζf which controls the bandwidth

of the process is selected. Corresponding ω0 and ωn are calculated. Measure of the

error in fitting to the cumulative number of zero-level up-crossings is given by

εw =

∫ tn
0

∣∣∣∫ t0 ν(0+, τ, ω̂0, ω̂n, ζf )r(τ)dτ −N(0+, t)
∣∣∣ dt∫ tn

0
N(0+, t)dt

(4.27)

The optimum value of ζf can be chosen by comparing the cumulative number

of negative maxima and positive minima of the target accelerogram and the fitted

model.
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4.9. Summary of Parameters

Table 4.1: Summary of parameters of the stochastic ground motion model

S. No. Parameter Description

1 T0 Starting time of the process

2 T1 Starting time of the strong motion phase

3 T2 Ending time of the strong motion phase

4 σmax RMS value of acceleration in strong motion phase

5 α Parameter that shape the decaying end

6 β parameter that shape the decaying end

7 ω0 Filter frequency at time, T0

8 ωn Filter frequency at time, Tn

9 ζf Filter damping ratio

10 tn Total duration of ground motion

11 ∆t Time steps required

4.9 Summary of Parameters

A summary of all the parameters required to generate a ground motion using the

above described process is given in a tabular form in the Table 4.1. The first nine pa-

rameters are already described. Two more parameters are required. One is the total

duration of the ground motion Tn, the other is the time steps in the accelerogram

represented by ∆t.
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Chapter 5

Stochastic Simulation of Ground

Motions

5.1 Introduction

A method to generate an ensemble of artificial earthquake ground motions is de-

scribed in this chapter. The method is based upon the stochastic ground motion

model described in the previous chapter. A database of recorded earthquake ground

motions is created. In the next step, the nine parameters required to depict a

particular ground motion is found out for all the ground motions in the database.

Probability distributions are created for the parameters of all the earthquakes in the

database. Now, the parameters required by the stochastic ground motion model to

simulate ground motions are obtained from the distributions. Monte Carlo simula-

tions is used to generate an ensemble of ground motions.

5.2 Database of Recorded Time Histories

A database of recorded earthquake accelerograms is created. The earthquakes are

selected arbitrarily. Earthquakes with intensity varying from moderate to high that

have occurred throughout the world in the past century are chosen. The chosen
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5.2. Database of Recorded Time Histories

earthquakes have occurred on different site conditions and have different character-

istics. Earthquake data are collected from reliable sources like National Geophysical

Data Center (NGDC), USA 1and The European Strong Motion Database (ESD) 2.

The details of the earthquakes in the database is given in Table 5.1. All the

time histories are edited to an uniform format. Further, it is shown that there is

no correlation between the earthquakes by finding the average of the power spectral

densities of all the earthquakes. The plot as shown in Figure 5.1 shows that the

spectrum resembles that of a white noise.

Figure 5.1: Plot showing the average power spectral density vs frequency

1http://www.ngdc.noaa.gov/hazard/data/cdroms/ accessed in October 2009.
2http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm accessed in October 2009.
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Chapter 5. Stochastic Simulation of Ground Motions
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5.2. Database of Recorded Time Histories
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Chapter 5. Stochastic Simulation of Ground Motions

5.3 Determination of Parameters

The nine parameters of the stochastic ground motion model as described in Section

4.7 are found out for each of the earthquakes in the database. The two additional

parameters that are required are the time duration Tn and the time steps ∆t. Tn is

known from the time history and ∆t is taken as 0.02 sec for all the earthquakes.

As the temporal and spectral nonstationarities are separable in the considered

stochastic ground motion model, the parameters of the modulating function and

the parameters of the filter are found out separately. The results are shown for

one accelerogram. The accelerogram chosen is the October 18th, 1989 Loma Prieta

earthquake’s 90 component recorded at Los Gatos Presentation Centre.

5.3.1 Parameters in the modulating function

The six parameters required for the modulating function can be obtained by solving

(4.23) by using an optimization technique. The minimum of the unconstrained

multivariable function in (4.23) is obtained by using Nelder-Mead simplex algorithm

[28]. A MATLAB code is developed for this purpose.

Figure 5.2: Cumulative energies in the target accelerogram and the fitted model

Figure 5.2 compares the two energy terms 2Ex(t) =
∫ t

0
q2(τ, λ)dτ and 2Ea(t) =∫ t

0
a2(τ)dτ , described in Section 4.7. It is seen that the fit is good at all the time

45



5.3. Determination of Parameters

Table 5.2: Values of parameters in the modulating function

S. No. Parameter Value

1 T0 0.072932 sec

2 T1 8.0154 sec

3 T2 12.88 sec

4 σmax 0.16308 g

5 α 0.80585 sec−1

6 β 0.44846

7 tn 25 sec

8 ∆t 0.02 sec

points. The error is minimised. The parameters obtained after optimization is

summarized in Table 5.2.

5.3.2 Parameters in the filter

Using the same method of optimization mentioned in Section 5.3.1, the parameters

in the filter is obtained by solving (4.25). To solve (4.25), first a value of ζf is

assumed. ζf is considered to be constant for the entire duration of the earthquake.

After obtaining the values of ω0 and ωn, seperate optimization is done by minimizing

the difference between the cumulative count of negative maxima and positive minima

of the target and the model. The values of ω0 and ωn are kept unchanged as it is

found that there is no big variation. Now, the exact value of ζf is known. The

values of ω0 and ωn are found corresponding to the final ζf . For the considered

accelerogram it is found to be 0.8.

Shown in Figure 5.3 is the cumulative count of negative maxima and positive

minima as a function of time for the Loma Prieta, 1989 record as well as the esti-

mated values of the same quantity of the model with damping ration ζf = 0.8. The

slope of these lines should be considered as the instantaneous measure of bandwidth.
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Chapter 5. Stochastic Simulation of Ground Motions

Figure 5.3: Cumulative count of negative maxima and positive minima

Table 5.3: Values of parameters in the filter

S. No. Parameter Value

1 ω0 30.297 rad/sec

2 ωn 10.075 rad/sec

3 ζf 0.8

The parameters in the filter obtained after optimization is summarized in Table 5.3.

Shown in Figure 5.4 is the cumulative number of zero-level up-crossings as a

function of time for the Loma Prieta, 1989 record as well as the estimated values of

the same quantity of the model. It is seen that the fit is good at all the time points.

5.4 Simulation of a Target Accelerogram

After finding out all the parameters, an accelerogram can be simulated by using

the process described in the previous chapter. Simulated accelerogram has similar
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5.4. Simulation of a Target Accelerogram

Figure 5.4: Cumulative number of zero-level up-crossings in the target accelerogram
and model

characteristics but it will not be an exact replica of the target accelerogram. The

target accelerogram and a simulation is shown in the Figure 5.5.

To get more accurate simulations, the damping ratio of the filter ζf should be

considered as varying at various intervals of time. For simplicity, the damping

ratio of the filter ζf is considered as constant throughout the entire duration of the

earthquake.

Since we had described the ground acceleration as a filtered white noise process

which has a non-zero spectral density at zero frequency, the integral of the process

(the ground velocity or displacement) has infinite spectral density at zero frequency.

Because of this property, the variances of the velocity and displacement processes

keep on increasing even after the acceleration has vanished. This is contrary to (base-

line-corrected) accelerograms, which have zero residual velocity and displacement at

the end of the record. To overcome this problem, it is necessary to adjust the low-

frequency content of the stochastic model using a high-pass filter. This is not done

in the present work.
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Figure 5.5: Target accelerogram and a simulation using the fitted model

5.5 Distribution of Parameters

After identifying the model parameter values by fitting to each recorded ground mo-

tion in the database, a probability distribution is assigned to the sample of values of

each parameter. Now, there are 100 sets of parameters representing the 100 earth-

quakes. The time steps ∆t is kept constant for all the 100 earthquakes. Distribution

models are assigned to each of the 10 parameters.

5.5.1 Pearson distributions

This approach proposed by Karl Pearson [29], seeks to ascertain a family of distribu-

tions that will satisfactorily represent observed data. Several important distributions

satisfy a difference equation that can be expressed in the form [30]

dp(x)

dx
=

a0 + a1x

b0 + b1x+ b2x2
p(x) (5.1)

where p(x) is the probability density function (PDF) at any x. ai and bi, i = 0, 1, 2

are constants calculated from central normalised statistical moments. They are

represented as
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5.5. Distribution of Parameters

a0 = µ3(µ4 + 3) (5.2a)

a1 = 10µ4 − 18− 6µ2
3 (5.2b)

b0 = 3µ3
3 − 4µ4 (5.2c)

b1 = −µ3(µ4 + 3) (5.2d)

b2 = 3µ2
3 − 2µ4 + 6 (5.2e)

The moments µk are given by

µk =
mk

σk
=

1

Nσk

N∑
i=1

[xi − E(x)]k =
1

N

N∑
i=1

〈
[xi − E(x)]

σ

〉k
(5.3)

Wwhere

Ex =
1

N

N∑
i=1

xi (5.4a)

mk =
1

N

N∑
i=1

[xi − E(x)]k (5.4b)

The moment µ1 is the mean, µ2 is the variance, µ3 is the skewness and µ4 is the

kurtosis. The determinant D is given by

D = 4b0b2 − b2
1 (5.5)

The main types of distribution are distinguished based on the roots of the

quadratic in the denomonator of (5.1) and the value of b2. Two of the important

types of distributions are explained as examples.
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Pearson Type I

When D < 0 and b2 6= 0, the distribution is classified as Pearson type I which is

also called as the generalised β distribution. For this type, the PDF p(x)is given by

p(x) =


kn(x− x1)r(x2 − x)s x1 ≤ x ≤ x2

0 otherwise

(5.6)

where

x1,2 = −b1 ± z
2b2

(5.7a)

r =
a0 + a1x1

b2(x1 − x2)
> −1 (5.7b)

s =
a0 + a1x2

b2(x2 − x1)
> −1 (5.7c)

here z =
√
−D and kn is calculated such that

∫ x2
x1
p(x)dx = 1.

Pearson Type IV

When D > 0 and b2 6= 0, the distribution is classified as Pearson type IV. For this

type, the PDF p(x)is given by

p(x) = Kn[a2 + (x+ x0)2]−ue−v arctan(
x+x0
a

) (5.8)

where
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Table 5.4: Statistical characteristics of the parameter data

Parameter Mean Standard Deviation Lowest Value Highest Value
T0 0.03 0.06 0.00 0.18

T1 2.91 5.25 0.00 43.95

T2 10.52 8.71 0.82 43.90

Tn 40.88 28.40 6.50 180.12

α 1.46 1.77 0.01 8.47

β 1.24 1.31 0.01 7.67

σmax 0.08 0.07 0.01 0.33

ω0 31.89 13.28 8.86 73.26

ωn 15.15 13.43 0.00 56.59

ζf 0.51 0.23 0.10 0.90

x0 =
b1

2b2

(5.9a)

u =
−a1

2b2

> 0 (5.9b)

v =
2b2(1− u)

z
(5.9c)

a =
z

2b2

(5.9d)

here z =
√
D and kn is calculated such that

∫∞
−∞ p(x)dx = 1.

5.5.2 Distribution of model parameters

It is found that the data of all the 10 parameters are effectively fitted by β distri-

bution. A MATLAB code is written to determine the parameters required in (5.6).

The statistical details of the data of each parameter is given in Table 5.4.

Figure 5.6 shows the normalized frequency diagrams of the fitted model param-

eters for the entire dataset with the fitted probability density functions (PDFs)

superimposed. All the parameters have β distribution and the parameter values of
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Table 5.5: Details of the β PDF of all the parameters

Parameter Data x1 x2 r s kn
T0 linear 0.01 0.16 -0.46 2.53 317

T1 linear 1.72 55.82 -0.80 7.78 4.98E-15

T2 log -0.59 1.84 4.88 2.83 1.75E-01

Tn log -0.34 2.68 14.50 8.64 4.51E-05

α linear -0.04 13.33 0.28 9.13 4.16E-11

β linear 0.06 47.70 0.66 63.87 1.25E-107

σmax log -2.61 0.28 6.48 7.50 6.30E-03

ω0 linear 9.74 141.16 2.02 13.90 2.95E-33

ωn linear -2.96 67.00 0.61 3.62 3.17E-09

ζf linear 0.05 1.02 0.59 0.73 3.61

their distribution is listed in Table 5.5.

5.6 Generation of an Ensemble of Ground Mo-

tions

A cluster of earthquake ground motions is produced. This is done by randomly

selecting the parameters of the stochastic ground motion model. Initially 10000

samples of each parameter is arbitrarily chosen from the distributions of the partic-

ular parameter. From this pool of samples, 5000 sets of parameters which satisfy

the conditions specified in Section 4.7 are chosen.

Using this 5000 sets of parameters, 5000 artificial ground motions are gener-

ated. This cluster of earthquakes represents a completely random choice of ground

motions.
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Figure 5.6: PDF of parameters superimposed on observed normalized frequency
diagrams
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Chapter 6

Stochastic Response of an Isolated

Building

6.1 Introduction

The stochastic response of the base-isolated building structure is calculated by us-

ing direct Monte Carlo simulations. The uncertainty in the characteristics of the

ground motion is considered and all the structural parameters are considered to

be deterministic. Response analysis, reliability analysis and parametric studies are

presented in this chapter. The deterministic analysis procedure for each simulation

is as described in the Chapter 3.

6.2 Response Quantities

The response quantities of interest are the absolute peak value of the acceleration at

the top floor, hereinafter simply referred as top floor acceleration and the peak value

of the isolator displacement hereinafter simply referred as isolator displacement.

To perform the response analysis, a total of 5000 artificial earthquakes are sim-

ulated as described in Section 5.6. Deterministic analysis is performed for each

simulation and their corresponding response quantities are calculated. The deter-
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Table 6.1: Summary of parameters of the isolator for stochastic response

S. No. Parameter Value

1 Ratio of floor mass to isolator mass 1:1

2 Damping Ratio of the isolator, ζb 0.1

3 Time period of the isolator, Tb 2.0 sec

4 Design Displacement, D 40 cm

5 Yield displacement, q 2.5 cm

ministic results are then processed to find the peak values, root mean square (RMS)

values and distributions of the response quantities.

While calculating the responses, the parameters of the structure are kept un-

changed. The parameters are as given in Table 3.1. The parameters of the isolator

considered are tabulated in Table 6.1.

The distributions of the responses are calculated. The type of the distribution

is found out by using Pearson distributions as described in Section 5.5. The param-

eters of the distribution are calculated by using MATLAB functions which use the

maximum likelihood estimates (MLE) to find the parameters of the distribution.

The top floor acceleration is found to be fitted effectively by using beta distribution

and the isolator displacement is effectively fitted by generalized pareto distribution.

The PDFs of the response quantities are plotted and superimposed with their

observed frequency diagrams as shown in Figure 6.1. The cumulative distribution

function (CDF) is plotted for both the response quantities and is shown in Figure

6.2.

The statistical characteristics of the response quantities are tabulated in Table

6.2. For the considered parameters, the extreme top floor acceleration is found

to be 0.89g and the extreme isolator displacement is found to be 92 cm. Their

corresponding root mean square values (RMS) are 0.185g and 9.122 cm.
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Figure 6.1: PDF of response quantities superimposed on observed normalized fre-
quency diagrams

Table 6.2: Statistical details of the response quantities

Response quan-
tity

Lowest
Value

Highest
Value

Mean Standard
Deviation

Distribution
Type

Top floor acceler-
ation (g)

1.47E-06 0.89 0.158 0.097 Beta

Isolator Displace-
ment (cm)

0.004 92 5.873 6.981 Generalized
Pareto

6.3 Extreme Earthquakes

An attempt is made to study the characteristics of the earthquakes which produce

extreme responses. After 5000 simulations, 40 earthquakes were found to produce a

top floor acceleration in excess of 0.4 g and 38 earthquakes were found to produce

an isolator displacement in excess of 40 cm. It is seen that the base isolation is

effective for more than 99 percent of the earthquakes generated.

After studying the parameters of the earthquakes that produce extreme re-

sponses, it is found that most of the earthquakes have a high value of RMS ground

acceleration in the strong motion phase which is given by the parameter σmax. How-
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Figure 6.2: CDF of response quantities superimposed on observed normalized fre-
quency diagrams

ever, there are some earthquakes with lesser value of σmax which produce higher

responses. This is due to the fact that the predominant frequency of the earthquake

ground motion approaches the fundamental frequency of the base isolated building

considered which induces the phenomenon of resonance.

To establish a relationship between the characteristics of these earthquakes and

for a detailed study of these extreme earthquakes a huge number of simulations are

required.

6.4 Reliability Analysis

6.4.1 Limit state

The probability of failure or limit state probability for this system is defined using

a limit state function which is defined as the case where the top floor accelerations

reach a 0.3 g acceleration level.

This can be formally stated with the limit state function

h(X) = 0.3− |ai| (6.1)
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where ai is the peak acceleration of the top floor in g. Then, the probability of

failure is defined as

Pf = P [h(X) ≤ 0] (6.2)

6.4.2 Probability of failure

The probability of failure is evaluated via Monte Carlo simulation by determining

the number of realizations with h(X) ≤ 0 and dividing that number by the total

number of simulations.

The convergence of the probability of failure is demonstrated in Figure 6.3 where

the isolator parameters Tb = 2.0 sec, q = 2.5 cm, ζb = 0.1 and D = 40 cm. From

Figure 6.3 it is seen that the probability of failure reaches a constant level at around

5000 simulations. Therefore, the convergence is achieved after 5000 simulations.

Figure 6.3: An example of convergence of probability of failure for the isolation
system
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Table 6.3: Peak values of the response of the structure: 200 simulations
Top floor acceleration (g) Isolator displacement (cm)

ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2 ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2
Tb=2 sec
q=0.01 cm 0.93 1.03 1.20 1.41 83.28 65.54 46.40 44.47
q=2.5 cm 1.00 0.90 1.08 1.19 85.94 67.33 49.53 45.47
q=5 cm 1.00 0.87 0.90 1.06 86.79 69.25 55.10 45.54

Tb=3 sec
q=0.01 cm 0.92 0.68 0.73 0.77 211.77 152.85 130.88 116.13
q=2.5 cm 0.92 0.70 0.60 0.61 210.52 158.47 136.64 122.41
q=5 cm 0.90 0.70 0.58 0.51 203.82 162.15 140.13 127.05

Tb=4 sec
q=0.01 cm 0.82 0.63 0.55 0.52 339.29 284.78 247.10 217.39
q=2.5 cm 0.82 0.62 0.52 0.45 336.75 281.76 243.81 217.20
q=5 cm 0.79 0.63 0.51 0.42 332.92 284.08 241.39 222.21

Tb=5 sec
q=0.01 cm 0.92 0.81 0.78 0.60 600.32 561.73 585.86 506.79
q=2.5 cm 0.90 0.78 0.74 0.60 596.43 563.25 572.98 489.96
q=5 cm 0.88 0.80 0.70 0.52 590.34 571.18 557.81 466.00

6.5 Parametric Studies

Analyses are conducted for different isolation periods and isolation damping ratios

of isolation floor. Combinations of isolation periods of 2, 3, 4 and 5 sec, isolation

damping ratios of 5%, 10%, 15% and 20% and isolator yield displacements of 0.01

cm, 2.5 cm and 5 cm are considered. Therefore, a total of 64 different structures are

analysed. For every combination, the design displacement, D of the isolator is kept

constant at 40 cm.

The peak top floor acceleration and peak isolator floor displacement, and the

root mean square (RMS) values corresponding to these are in Tables 6.3 to 6.6. The

RMS values of the response quantities for 200 simulations as shown in Table 6.4

and the corresponding values for 400 simulations shown in Table 6.6 are not varying

significantly. So, the number of simulations for conducting parametric studies is

fixed at 400.
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Table 6.4: RMS values of the response of the structure: 200 simulations
Top floor acceleration (g) Isolator displacement (cm)

ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2 ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2
Tb=2 sec
q=0.01 cm 0.35 0.49 0.60 0.70 19.74 13.03 9.92 8.51
q=2.5 cm 0.28 0.30 0.38 0.47 21.53 14.72 12.16 10.58
q=5 cm 0.29 0.28 0.32 0.37 23.12 16.65 13.96 12.57

Tb=3 sec
q=0.01 cm 0.25 0.29 0.37 0.43 44.98 34.12 27.58 24.24
q=2.5 cm 0.22 0.19 0.19 0.21 45.94 35.51 29.82 26.67
q=5 cm 0.22 0.18 0.17 0.18 46.45 36.64 31.11 28.28

Tb=4 sec
q=0.01 cm 0.20 0.21 0.26 0.30 71.09 58.19 50.76 47.14
q=2.5 cm 0.18 0.15 0.14 0.14 71.67 58.68 52.00 49.04
q=5 cm 0.18 0.15 0.13 0.13 71.90 59.02 52.95 50.55

Tb=5 sec
q=0.01 cm 0.17 0.18 0.20 0.23 99.58 92.66 88.35 81.46
q=2.5 cm 0.16 0.14 0.13 0.12 99.44 92.90 88.56 82.48
q=5 cm 0.15 0.14 0.12 0.11 99.31 93.30 88.50 82.67

Table 6.5: Peak values of the response of the structure: 400 simulations
Top floor acceleration (g) Isolator displacement (cm)

ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2 ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2
Tb=2 sec
q=0.01 cm 0.99 1.03 1.25 1.59 85.76 67.94 54.44 44.71
q=2.5 cm 1.00 0.90 1.08 1.27 87.79 75.98 61.18 45.47
q=5 cm 1.00 0.92 0.90 1.06 87.49 75.36 65.62 49.34

Tb=3 sec
q=0.01 cm 0.92 0.68 0.73 0.77 211.77 152.85 130.88 116.13
q=2.5 cm 0.92 0.70 0.60 0.61 210.52 158.47 136.64 122.41
q=5 cm 0.90 0.70 0.58 0.51 203.82 162.15 140.13 127.05

Tb=4 sec
q=0.01 cm 0.82 0.71 0.57 0.57 339.29 314.27 267.91 217.39
q=2.5 cm 0.83 0.70 0.58 0.45 337.17 317.72 266.66 217.20
q=5 cm 0.83 0.70 0.51 0.43 340.30 314.89 258.74 222.21

Tb=5 sec
q=0.01 cm 0.92 0.81 0.78 0.60 600.32 561.73 585.86 506.79
q=2.5 cm 0.90 0.78 0.74 0.60 596.43 563.25 572.98 489.96
q=5 cm 0.88 0.80 0.70 0.52 590.34 571.18 557.81 466.00
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Table 6.6: RMS values of the response of the structure: 400 simulations
Top floor acceleration (g) Isolator displacement (cm)

ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2 ζb=0.05 ζb=0.1 ζb=0.15 ζb=0.2
Tb=2 sec
q=0.01 cm 0.33 0.47 0.58 0.67 17.97 11.74 8.97 7.63
q=2.5 cm 0.26 0.28 0.37 0.45 19.64 13.65 11.31 9.70
q=5 cm 0.27 0.27 0.30 0.35 21.12 15.57 13.20 11.61

Tb=3 sec
q=0.01 cm 0.23 0.28 0.35 0.42 40.90 30.05 23.88 20.60
q=2.5 cm 0.20 0.17 0.18 0.20 41.73 31.50 25.92 22.99
q=5 cm 0.20 0.17 0.16 0.17 42.24 32.66 27.23 24.63

Tb=4 sec
q=0.01 cm 0.18 0.21 0.25 0.29 65.58 53.73 45.62 40.69
q=2.5 cm 0.17 0.14 0.13 0.13 66.02 54.33 46.82 42.48
q=5 cm 0.17 0.14 0.12 0.12 66.33 54.70 47.69 43.94

Tb=5 sec
q=0.01 cm 0.15 0.16 0.19 0.22 89.80 82.49 75.56 67.96
q=2.5 cm 0.14 0.12 0.11 0.10 89.88 82.67 75.90 69.20
q=5 cm 0.14 0.12 0.11 0.10 89.92 82.91 75.92 69.60

It is observed that the top floor acceleration decreases with the increase in the

yield displacement of the isolator and the isolator displacement decreases with the

increase in the yield displacement.

Figures 6.4, 6.5 and 6.6 show the variation of response quantities for different

isolation periods, Tb and isolation damping ratios, ζb when the value of the yield

displacement of the isolator, q is assumed as 0.01 cm, 2.5 cm and 5 cm respectively.

It can be seen that the top floor acceleration decreases as the isolation time period

increases. Also, the top floor acceleration decreases as the damping ratio increases.

The displacement in the isolator increases as the time period increases, and decreases

as the damping ratio increase.

The acceleration response decreases with increasing isolation periods. The small-

est possible acceleration favors the selection of Tb = 5 sec for the isolation period.

However, peak isolator displacement is high with long isolation periods. This prob-
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lem can be solved by employing high damping. Therefore, the isolation system with

a long isolation period and high damping is the most effective.

This design approach for the isolation system can help design engineers in de-

signing reliable isolation systems.

 

   

Figure 6.4: Variation of response quantities for different isolation periods, Tb and
isolation damping ratios, ζb, q = 0.01 cm, 400 simulations
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Figure 6.5: Variation of response quantities for different isolation periods, Tb and
isolation damping ratios, ζb, q = 2.5 cm, 400 simulations
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Figure 6.6: Variation of response quantities for different isolation periods, Tb and
isolation damping ratios, ζb, q = 5 cm, 400 simulations
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Chapter 7

Conclusion

7.1 Summary and Conclusion

In this study, a database of recorded earthquakes is created and a probabilistic

method to generate artificial earthquakes based on recorded ground motions in the

database is provided. Using Monte Carlo simulations, stochastic response of a five

storey base-isolated building under earthquake excitations is reported by considering

the earthquake parameters to be uncertain. A reliability analysis is done. A study on

the parameters of the earthquake which produces very high responses is attempted.

A parametric study based on the isolator characteristics is done.

Based on the work it is concluded that:

1. About 0.8 percent of the earthquakes simulated by using the probabilistic

model produces very high responses. These earthquakes generally have very

high average intensity in the strong motion phase.

2. The base isolation is very effective for more than 99 percent of the earthquakes

generated.

3. The top floor acceleration decreases with the increase in the yield displacement

of the isolator and the isolator displacement decreases with the increase in the

yield displacement.
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4. The isolation system with a long isolation period and high damping is the

most effective.

7.2 Limitations

The probabilistic model developed is based on arbitrary recorded earthquakes. As

a result, the earthquakes produced are highly random in nature. Therefore, studies

using specific characteristics of earthquakes such as site conditions, fault type, etc

cannot be studied.

The uncertainties in the characteristics of the structure and the isolator are

neglected.

The accuracy of the Monte Carlo simulations depends largely on the number of

simulation. Therefore, a large number of simulations are required which consumes

a lot of time.

7.3 Future Scope of Work

An extensive database with earthquakes with specific characteristics like fault type,

site characteristics etc can be developed. The model developed can be used to

generate an earthquake of desired qualities.

The predictive equations used to predict the earthquake characteristics for a

particular site can be combined with the ground motion model to produce a set of

earthquakes pertaining to that site. By doing this, it will be possible to generate a

ground motion for a particular site with an associated probability of occurrence of

that particular ground motion. Software can be developed by using the database

and the set of program developed which will be very useful for design engineers.

The uncertainties in the isolator characteristics and the structural characteristics

like stiffness and damping can be modelled and a stochastic analysis of a base isolated

structure under earthquake excitation can be done.
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Chapter 7. Conclusion

A comprehensive stochastic analysis of base isolated structure can be done by

using non-sampling methods like the Karhunen Loeve method and the Polynomial

Chaos method.
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