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ABSTRACT

One of the emerging tools for protecting structures from the damaging effects of
earthquakes is the use of isolation systems. Seismic isolation is achieved via inserting
flexible isolator elements which lengthens the vibration period and increase energy
dissipation. This study investigates the stochastic response of a base-isolated build-
ing considering the uncertainty in the characteristics of the earthquakes. For this
purpose a probabilistic ground motion model, for generating artificial earthquakes
is developed. The model is based upon a stochastic ground motion model which has
separable temporal and spectral non-stationarities. A database of recorded earth-
quake ground motions is created. The parameters required by the stochastic ground
motion model to depict a particular ground motion are found out for all the ground
motions in the database. Probability distributions are created for all the parameters.
Using Monte Carlo simulations the parameters required by the stochastic ground
motion model to simulate ground motions are obtained from the distributions and
ground motions. A bilinear model of the isolator described by its characteristic
strength, post-yield stiffness and yield displacement is used and the stochastic re-
sponse is calculated by using an ensemble of generated earthquakes. A parametric
study is done for the various characteristics of the isolator. Reliability analysis is
carried out on the base-isolated structure. It is found that base isolation is very

effective for more than 99 percent of the earthquakes generated.

Keywords : Base Isolation, Stochastic Response, Ground Motion Model, Arti-
ficial Earthquakes, Bilinear Model, Reliability
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Chapter 1

Introduction

1.1 Base Isolation

Base isolation, also known as seismic or base isolation system, is a collection of
structural elements which should substantially decouple a superstructure from its
substructure resting on a shaking ground thus protecting a building or non-building
structure’s integrity.

Base isolation intends to decouple the structure from seismic ground motion,
minimizing, simultaneously, the interstorey deformations and the floor accelerations
by interposing elements of high axial and low horizontal stiffness between the struc-
ture and the foundation.

Base isolation is the most powerful tool of the earthquake engineering pertain-
ing to the passive structural vibration control technologies. It is meant to enable a
building or non-building structure to survive a potentially devastating seismic im-
pact through a proper initial design or subsequent modifications. In some cases,
application of base isolation can raise both a structure’s seismic performance and its
seismic sustainability considerably. Contrary to popular belief base isolation does
not make a building earthquake proof.

Even though the concept of base isolation has been introduced from the begin-

ning of the 19" century, it has been extensively studied and applied to engineering



1.1. Base Isolation

practice only during the last 25 years. Although there are various systems, base

isolation techniques follow two basic approaches.

1.1.1 Elastomeric systems

In this approach, the isolation system introduces a layer of low lateral stiffness
between the structure and its foundation. Due to the introduction of this layer,
the structure has a natural period that is longer than its fixed base natural period.
This reduces the earthquake induced force in the structure, but the deformation is

increased due to the deformation in the isolation system.

Figure 1.1: Photo of a bearing system  Figure 1.2: Photo showing deformed
with all the elements. Source: [1] shape of a isolator. Source: [2]

The most commonly used systems of this type use short, cylindrical bearings
with alternating layers of steel and hard rubber. Interposed between the base of
the structure and the foundation, these laminated bearings are strong and stiff un-
der vertical loads but very flexible under lateral forces. Since the natural damping
of rubber is low, additional damping is usually provided by means of a mechan-
ical damper. These can be lead plugs inside the bearing, steel coils or hydraulic
dampers. These metallic dampers provide energy dissipation through yielding, thus
non-linearity is introduced in the system.

Figure 1.1 and Figure 1.2 show the photos of a bearing system with all the

elements and deformed shape of a laminated rubber bearing (LRB).

2



Chapter 1. Introduction

1.1.2 Sliding systems

This system uses rollers or sliders in between the base of the structure and the foun-
dation. The shear force transmitted to the structure across the isolation interface
is limited by keeping the coefficient of friction as low as practical. But the friction
should be sufficiently high to sustain high wind forces and minor earthquakes, this

reduces the isolation effect.

—Superstructure
retainer

~

Isolator

plate

— Substructure :
steel ball retainer

Figure 1.3: Sketch of a sliding system.  Figure 1.4: Sketch of a ball bearing.
Source: [3] Source: [1]

In this type of isolation system, the sliding displacements are controlled by high
tension springs or laminated rubber bearings, or by using concave dish of rollers.
These mechanisms which provide a restoring force, otherwise unavailable in this
system, help in bringing the structure back to its equilibrium. The dynamics of
structures on this type of isolation system is highly complicated as the slip process
is intrinsically non-linear.

Figure 1.3 and Figure 1.4 show the sketch of a sliding system with all the elements

and a sliding type isolator

1.2 Stochastic Response

Generally, structural analysis is based on a deterministic concept. Observed vari-
ations in loading conditions, material properties, geometry, etc. are taken into
account by either selecting extremely high or low or average values, respectively, for

representing the parameters. Hence, by this, uncertainties inherent in almost every
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analysis process are considered just intuitively. Observations and measurements of
physical processes, however, clearly show their random characteristics.

Structural engineering design is filled with uncertainties, some of which are obvi-
ous and some of which many engineers may never have considered. Uncertainty can
be separated into two categories: Aleatory, related to luck or chance, and epistemic,
related to knowledge [4].

Statistical and probabilistic procedures provide a sound frame work for a rational
treatment of analysis of these uncertainties. Moreover, there are various types of
uncertainties. The entire spectrum of uncertainties is also not known. In reality,
neither the true model nor the model parameters are deterministically known [5].

Tn L Tm

Deterministic

Conception

- &~
xr1 A 1 A
xr2 2

esponse

Input- Resy
. Space
Parameter Space T

T'm

Concept ) \ SN
including ‘

/// - ,r‘
_ y
Uncertainties /\

A 1 a4 A

T2 T2
Probability
€ - Ti
f E 1(z3) Distributions A( )

Figure 1.5: Deterministic concept versus stochastic concept. Source: [5]

T

In the deterministic concept, a single value is considered to be enough to repre-
sent a particular variable. It is in fact a great number of values, each associated with
a certain probability of occurrence of a particular value, which is needed for a realis-
tic description. Hence, the variables in their basic form may be described as random
variables. The associated uncertainty are quantified by probability measures such
as probability density functions.

Figure 1.5 explains the comparison between the deterministic concept and the

stochastic concept.

4



Chapter 1. Introduction

1.2.1 Monte Carlo simulations

The evaluation of the stochastic response by the Monte Carlo simulation technique
is a powerful method for highly non-linear systems as well as for systems where the

input is modeled by large number of random variables [5].

Response

deterministic )
> T (5, 9%)
(@i, )

HIUI fla)

Figure 1.6: Stochastic analysis based on Monte Carlo simulation. Source: [5]

analyses

flyx)

Figure 1.6 explains the basic principles of Monte Carlo sampling, where the
laws of statistics are used to derive information on the variability of the response.
By using a suitable random number generator, statistically independent samples
of the input which follow the prescribed probability distributions of the uncertain
parameters are generated. Let the system be described by the operator @), so that

a set of random input variables collected in a vector z is mapped to the output y,

Qr =y (1.1)

In the simplest form of the Monte Carlo simulation technique, denoted as direct
Monte Carlo simulation, for each generated sample of the input z(i) the corre-
sponding output (i) is calculated. Hence, the input distribution f(xy, z, ...,z ) is
represented according to statistical laws by a finite number of independent samples
x(i);_,. Each vector (i) specifies for each uncertain parameter a deterministic dis-
crete value and consequently defines deterministically the response which might be

represented by the vector as follows
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Yy = Qz® (1.2)

Hence, traditional deterministic analyses can be used to provide the mapping

given by (1.2) between input and response.

In the simplest case, it might be justified to assume that all uncertainties are
independent. Such an assumption is reasonable as long as this assumption does not

contradict experience and physical properties.

1.3 Ground Motion Modeling

1.3.1 Characteristics of ground motion

Ground motion at a particular site due to earthquakes is influenced by source, travel
path and local site conditions. The first relates to the size and source of the source
mechanism of the earthquake. The second describes the path effects of the earth as
the wave travels from the source to the site. The third describes the effects of the

upper hundreds of meters of rocks and soil and the surface topography at the site.

It is well known that earthquake ground motions are nonstationary in both time
and frequency domains. Temporal nonstationarity refers to the variation in the in-
tensity of the ground motion in time. Spectral nonstationarity refers to the variation
in the frequency content of the motion in time. Although temporal nonstationarity
can be easily modeled by multiplying a stationary process by a time function, spec-
tral nonstationarity is not so easy to model. However, both effects are important,

particularly in the non-linear response analysis.

There are two types of uncertainties in ground motion prediction, epistemic and
aleatory. Epistemic uncertainty is attributed to the incomplete knowledge and data

about the physics of earthquake phenomenon. Aleatory uncertainty is due to the

6



Chapter 1. Introduction

fact that the future earthquakes are unpredictable. In principle, the former can be

reduced by accumulating additional information but the latter cannot be reduced.

1.3.2 Need for ground motion modeling

The modeling, analysis and simulation of ground motion signals is of crucial im-
portance in studying and improving the behaviour of structures under earthquake
excitation and has thus attracted significant attention during the past several years.

The growing interest in performance-based earthquake engineering (PBEE) in re-
cent years has further increased the need for stochastic modeling of ground motions.
The PBEE analysis typically considers the entire spectrum of structural response,
from linear to grossly non-linear and even collapse. For such an analysis, realistic
characterization of the ground motion is essential. In the current PBEE practice,
usually recorded ground motions are employed, which are then scaled to various
levels of intensity. This approach suffers from scarcity of recorded ground motions
for specified earthquake characteristics. Stochastic ground motion models provide
an alternative for use in PBEE in lieu of or in conjunction with recorded ground

motions.

1.4 Objectives and Scope

1.4.1 Objectives of the study

The objective of this study is to determine the stochastic response of an isolated
building under earthquake excitations with an emphasis on the uncertainty in the
earthquake loading. The research tasks to accomplish these objectives are the fol-

lowing;:

1. Create a database of earthquakes and fit all the earthquakes to a stochastic

ground motion model.



1.5. Thesis Outline

2. Determine the probability density function of all the parameters required to

generate an artificial ground motion of required statistical characteristics.

3. Generate a large number of artificial ground motions. Perform stochastic re-

sponse analysis and parametric studies.

4. Perform reliability analysis on the response of the base-isolated building.

1.4.2 Scope of the study

All the parameters of the structure and isolator such as mass, stiffness, damping,
etc are considered to be deterministic. Only the uncertainty in the earthquakes is
considered for finding the stochastic response.

The probabilistic model created for the earthquake loading is random in nature.
There is no established connection to specific characteristics of the earthquake such

as source, site conditions, etc.

1.5 Thesis Outline

The content of the dissertation is organized into the following chapters:

Chapter 2 provides a literature review on topics of interest for this study. Partic-
ular emphasis is given to the stochastic modeling of ground motion, base isolation,
stochastic response and reliability analyses. A critical assessment of the current-
state-of-the-art is presented.

Chapter 3 deals with the deterministic response of an isolated building structure
under earthquake excitation. The modeling of the structure and isolator, governing
equations of motion, solution procedure and an example are presented.

Chapter 4 explains the stochastic ground motion model selected for this study.
Description of the various steps involved in generating a ground motion and identi-

fying the parameters of the model is presented.

8



Chapter 1. Introduction

Chapter 5 describes about the database of the earthquakes. The identification
of the parameters for the earthquakes in the database and their probability density
function is described.

Chapter 6 presents a stochastic reponse analysis, parametric studies, study of
the extreme response quantities and the reliability analysis of the response.

Chapter 7 presents a summary of the research, major conclusions drawn from

this study, and recommendation for future research.
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Chapter 2

Literature Review

2.1 Introduction

The introduction of seismic isolation as a practical tool has provided a rich source of
literature on experimental and theoretical work, both in the dynamics of the isolated
structural systems and in the mechanics of the isolators. Synthetic ground motions
have been of interest in the field of earthquake engineering for many years. There
is a lot of literature related to ground motion modeling. This chapter presents a
summary of the previous studies that address the modeling of ground motions and

various studies on base isolated structures.

2.2 Base Isolation

Reviews presented by Kelly [6], Buckle and Mayes [7], Ibrahim [8] and Jangid and
Datta [9] summarize much of the literature on theoretical aspects of seismic isolation,
testing programmes and isolation systems which have been used in buildings. These
reviews describe the characteristics of the various implemented systems.

Matsagar and Jangid [10] studied the influence of isolator characteristics on

the response of base-isolated structures by considering the isolator to have bilinear

11



2.8. Ground Motion

hysteretic and equivalent linear elasticviscous behaviors. This study elaborates on
the use of isolators with different model types and parameters.

Sharma and Jangid [11] studied the effect of high initial stiffness in the bilinear
model of the isolator on the behaviour of base-isolated structures. They concluded
that the floor accelerations and interstorey drifts are increasing significantly with

the increase of the initial stiffness of the isolation system.

2.3 Ground Motion

There are two types of stochastic ground motion models: models that describe the
random occurrence of fault ruptures at the source and propagation of the resulting
seismic waves through the ground medium (source based models) and models that
describe the ground motion for a specific site by fitting to a recorded motion with
known earthquake and site characteristics (site based models). A review of source
based models is presented by Zerva [12].

By using a site based stochastic model, one is able to generate artificial ground
motions, which have statistical characteristics similar to those of the target ground
motion. A large number of site based models have been proposed in the past. A
review is presented by Shinozuka and Deodatis [13] and more recently by Conte and
Peng [14].

Kiureghian and Crempien [15] proposed an evolutionary random process model
for describing the earthquake ground motion. The model is composed of individually
modulated component stationary processes, each component representing the energy
in the process in a narrow band of frequencies. The model accounts for both temporal
and spectral nonstationarity of the motion.

A probabilistic ground motion model was proposed by Papadimitriou [3] which is
capable of capturing, with at most nine parameters, all those features of the ground
acceleration history which have an important influence on the dynamic response

of linear and non-linear structures, including the amplitude and frequency content

12



Chapter 2. Literature Review

nonstationarities of the shaking. The model is based on bayesian probabilistic frame-
work.

A fully nonstationary stochastic model for strong earthquake ground motion
was developed by Rezaeian and Kiureghian [16]. The model employs filtering of a
discretized white-noise process. Nonstationarity is achieved by modulating the in-
tensity and varying the filter properties in time. The formulation has the important
advantage of separating the temporal and spectral nonstationary characteristics of
the process, thereby allowing flexibility and ease in modeling and parameter esti-

mation.

2.4 Stochastic Response

Schiieller and Pradlwarter [17] presented a review on the various methods available
for uncertainty analysis of complex structural systems. It is shown that advanced
Monte Carlo simulation (MCS) procedures is the most versatile approach.

Er and Iu [18] studied the stochastic response of a rigid structure connected
to a foundation with coulomb friction-type base isolation subjected to stationary
Gaussian white noise type ground excitations. Analytical solutions were compared
to MCS results.

Su and Ahmadi [19] did a study on the responses of a rigid structure with a
frictional base isolation system subjected to random horizontal-vertical earthquake
excitations. The ground accelerations were modelled by segments of stationary
and nonstationary Gaussian white noise and filtered white noise processes. The
differential equation governing the covariance matrix was solved and the results
were compared with those obtained by a series of Monte-Carlo digital simulations
and reasonable agreement was observed.

Analytical solutions for the stochastic response of practical sliding systems were
proposed by Constantinou and Papageorgiou [20] and the results were verified by

extensive Monte Carlo simulations.

13



2.5. Summary

Pradlwarter et al. [21] did a study on the application of controlled Monte Carlo
simulation for studying the effect of a two dimensional hysteretic, friction based
device assembled at particular locations throughout the structure.

In a study by Yeh and Wen [22], a stochastic model of ground excitation was pro-
posed in which both intensity and frequency content are functions of time. Responses
of single-mass inelastic systems and three-story space frames, with or without de-
terioration, under the nonstationary biaxial ground excitation were investigated via
the equivalent linearization method and Monte Carlo simulations.

Alhan and Gavin [23] presented a paper on reliability analysis of a four storey
structure representing a critical facility with an isolation floor, by including uncer-
tainties such as isolation system characteristics, eccentricity in the superstructure,
and ground motion characteristics. The Monte Carlo simulation technique was used

to determine probability distributions and failure probabilities.

2.5 Summary

The bilinear behaviour of the isolator can be effectively used to model most of the
isolation systems in practice. Stochastic ground motion models which consider both
the spectral and temporal non stationarity effectively simulates recorded ground
motions. There are few such models.

The uncertainty in the characteristics of the earthquake causes uncertainty in
parameters of the ground motion model. A probabilistic model which takes into
account the uncertainty in the parameters representing recorded earthquakes in the
stochastic ground motion model has not been proposed. This necessitates the need
for a probabilistic ground motion model which takes into account, the uncertainty
of the characteristics of the earthquakes.

Previous studies [17] - [23] have demonstrated that Monte Carlo simulation is an
effective method in obtaining stochastic response statistics. Studies show that the

results have reasonable agreement to analytical solutions. Monte Carlo simulation is

14



Chapter 2. Literature Review

a convenient and accurate method for calculating the probability of failure. Monte
Carlo simulation can be used for analyses where analytical reliability methods such
as First Order Reliability Methods (FORM), Second Order Reliability Methods
(SORM) and Response Surface Methods (RSM) are difficult to use.

15
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Chapter 3

Deterministic Response of an

Isolated Building

3.1 Introduction

The procedure used to find the deterministic response of a base-isolated building
under earthquake excitations is described in this chapter by considering a numerical

example. The modeling involved, solution procedure and results are detailed below.

3.2 Modeling

Lumped mass modeling is done for the superstructure and the isolator. The effect

of rotation in the structure and isolator is not taken into consideration.

3.2.1 Superstructure

The base-isolated building is modeled as a shear type structure mounted on isolation
systems with one lateral degree-of-freedom at each floor. Figure 3.1 shows the
idealized mathematical model of the five storey base-isolated building considered

for the present study.

17
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Figure 3.1: Mathematical model of the five storey base-isolated building

Following assumptions are made for the structural system under consideration:

1. The superstructure is assumed to remain within the elastic limit during the

earthquake excitation.

2. The floors are assumed to be rigid in its own plane and the mass is lumped at

18



Chapter 3. Deterministic Response of an Isolated Building

each floor level.
3. The columns are inextensible and weightless providing the lateral stiffness.

4. The system is subjected to a horizontal component of the earthquake ground

motion in one direction.

5. The effect of soil structure interaction is neglected.

x; is the relative floor displacement with respect to the isolator at the 5% floor,
m; is the floor mass at the ;™ th floor, k; is the stiffness of the j™ th floor, z, is the

displacement of the isolator and my is the mass of the isolator.

3.2.2 Isolators

For the present study, the force-deformation behaviour of the isolator is modeled
as non-linear hysteretic represented by the bilinear model. The model is shown in
Figure 3.2.

The non-linear force-deformation behaviour of the isolation system is modeled

through the bilinear hysteresis loop characterized by three parameters namely:

1. Characteristic strength, @)
2. Post-yield stiffness, k;, and

3. Yield displacement, g.

The bilinear behaviour is selected because this model can be used for most of the
isolation systems used in practice. The characteristic strength, @) is related to the
yield strength of the lead core in the elastomeric bearings and friction coefficient of
the sliding type isolation systems. The post-yield stiffness of the isolation system,
ky is generally designed in such a way to provide the specific value of the isolation

period, T, expressed as

M
Ty = 2my | = (3.1)
ks



3.3. Governing Equations of Motion
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Figure 3.2: Mathematical model of the isolator

Where M = (m;, + Z?Zl m;) is the total mass of the base-isolated structure.
The characteristic strength, () is mathematically related to the damping ratio, ¢, by
the following equation [24].

_4Q(D —q)
G = W (3.2)

Here D is the design displacement.
Thus, the bilinear hysteretic model of the base isolation system can be charac-

terized by specifying the three parameters namely Tp, () and q.

3.3 Governing Equations of Motion

The general equations of motion for the super structure-isolator model illustrated

in Figure 3.1 can be expressed as

MX™' () + CX(t) + KX(t) =0 (3.3)
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Chapter 3. Deterministic Response of an Isolated Building

Here X = {z;}" is the column vector of relative structural displacements with
respect to the isolator and X = {ijOt}T is the column vector of total structural
displacements. M is the mass matrix of structure, C' is the damping matrix of

structure and K is the stiffness matrix of structure.

21 =z + xp + 7 (3.4)

Where z, is the displacement of the ground due to the earthquake. w; is the dis-

placement of the isolator.

Now for the five storey base isolated building the governing equations of motions

are given by

MX(t)+CX(t) + KX(t) = —Mi, (3.5)

where

my 0 0 0 0 ma
0 mo 0 0 0 mo
0 0 ms 0 0 ms
M= (3.6)
0 0 0 mg 0 my
0 0 0 0 ms M;g
0O 0 0 0 0 m
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3.4. Solution Procedure

k1 —ky 0 0 0 0
_kl kl —+ kQ —kg 0 0 O
0 —k ko + k —k 0 0
K — 2 2 3 3 (37)
0 0 —ks kst ks —ku 0
0 0 0 ke Rt ks —ks
0 0 0 0~k ks+hk
M: {m17m27m37m47m57mb}T (38)
X = {1’1,x2,$3,$4,$5,$b}T (39)

The damping matrix of the superstructure, C' is not known explicitly. It is
constructed by assuming the modal damping ratio for superstructure, which is kept

constant.

3.4 Solution Procedure

Classical modal superposition technique cannot be employed in the solution of equa-
tions of motion here because (i) there is a difference in the damping in isolation sys-
tem compared to the damping in the superstructure and (ii) the force-deformation
behavior for the isolation systems considered is non-linear. Therefore, the equations
of motion are solved numerically using Newmark’s method of step-by-step integra-
tion [25]; adopting linear variation of acceleration over a small time interval of At.

The response quantities of interest such as acceleration, velocity and displace-
ment at any degree of freedom, force in the isolator are calculated at each time

interval. The force in the isolator is calculated by using Wen’s model [26] from the
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Chapter 3. Deterministic Response of an Isolated Building

non-linear force-deformation diagram. A FORTRAN program is developed for this

purpose.

3.5 Numerical Example

To find the deterministic response of the isolated structure, a recorded earthquake
accelerogram is considered. The response is calculated and the results are plotted.
The response quantities of interest are the top floor absolute acceleration and relative
isolator displacement. The above response quantities are chosen because the floor
accelerations developed in the superstructure are proportional to the forces exerted
due to earthquake ground motion and the bearing displacements are important for

the design of isolation systems.

06 |- | | | | ll

: T .
Loma Prieta, 1989| i

Acceleration (g)

-0.6 . ! . 1 . ! . 1 .
0 5 10 15 20 25

Time (sec)

Figure 3.3: Time history of the Loma Prieta, 1989 earthquake
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3.5. Numerical Example

Table 3.1: Summary of parameters of the superstructure

S. No. Parameter Value
1 Ratio of floor mass 1:1:1:1:1
2 Ratio of floor stiffness 2:3:4:5:6
3 Damping Ratio of each floor 0.02
4 Time period of the superstructure, T, 0.5 sec

3.5.1 Ground Motion

The earthquake motion selected for the study is NOOE component of 1989 Loma
Prieta earthquake recorded at Los Gatos Presentation Center. The peak ground
acceleration (PGA) of Loma Prieta earthquake is 0.57g. The time history of the

earthquake ground motion selected is shown in Figure 3.3

3.5.2 Structure and Isolator Parameters

The various parameters of the superstructure and the isolator considered for this
example is described in this section. The summary of parameters considered for the
super structure is given in Table 3.1 and the summary of parameters considered for
the isolator is given in Table 3.2. The floor mass of each floor of the structure is
considered to be equal. The stiffness is considered is such a way that the top floor
are less stiffer than the bottom floors. The stiffness increases proportionally from
top to bottom. Approximate time period of a five storey building is considered. The
damping ratio of the superstructure is taken as 0.02 and kept constant for all modes
of vibration. The inter-story stiffness of the superstructure is adjusted such that a
specified fundamental time period of the superstructure, Ty is achieved. The mass

of the isolator is considered to be equal to that of a floor.
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Chapter 3. Deterministic Response of an Isolated Building

Table 3.2: Summary of parameters of the isolator

S. No. Parameter Value
1 Ratio of floor mass to isolator mass 1:1
2 Damping Ratio of the isolator, ¢, 0.1
3 Time period of the isolator, T, 2.0 sec
4 Design Displacement, D 53.61 cm
5 Yield displacement, ¢ 2.5 cm

3.5.3 Response Quantities

The response of the structure under the excitation of the recorded ground motion
of Loma Prieta, 1989 earthquake is plotted. The time variation of the top floor
acceleration of the base-isolated structure and the structure with a fixed base is
shown in Figure 3.4. The effectiveness of base isolation is evident as we can see a
significant reduction in the quantity of the peak top floor acceleration. The peak top
floor acceleration of the fixed base structure is 2.92g and that of the base-isolated
structure is 0.66g. The time variation of the displacement in the base-isolator is

shown in Figure 3.5. The peak isolator displacement is 42.57 cm.
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Figure 3.4: Time variation of top floor acceleration
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Figure 3.5: Time variation of isolator displacement



Chapter 4

Stochastic Ground Motion Model

4.1 Introduction

The stochastic ground motion model used in the present study is described in detail
in this chapter. This fully nonstationary stochastic ground motion model uses filter-
ing of a discretized white-noise process. Nonstationarity is achieved by modulating
the intensity and varying the filter properties in time. The various steps involved in

this model is described in this chapter.

4.2 Advantages of the Model

The stochastic ground motion model selected considers both the temporal and spec-

tral nonstationarities. The selected model has the following advantages:

1. The model has a small number of parameters, which control the temporal
and spectral nonstationary characteristics of the simulated ground motion and
can be easily identified by matching with similar characteristics of the target

accelerogram.

2. The temporal and spectral nonstationary characteristics are completely sepa-

rable, facilitating identification and interpretation of the parameters.
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4.3. Modulated Filtered White Noise Process

3. There is no need for sophisticated processing of the target accelerogram, such

as the Fourier analysis or estimation of evolutionary power spectral density.

4. The filter model provides physical insight and its parameters can be related

to the characteristics of the earthquake and site considered.

5. Simulation of sample functions is simple and requires little more than genera-

tion of standard normal random variables.

4.3 Modulated Filtered White Noise Process

The modulated filtered Gaussian white noise process is obtained by time modulating
the stationary response of a linear filter subjected to a Gaussian white noise excita-
tion. Let the linear filter be defined by its impulse response function (IRF) h(t, ),
where 6 denotes a set of parameters used to shape the filter response. Specifically,
f may include the natural frequency and damping of the filter, which control the
predominant frequency and bandwidth of the process. We assume that the filter is
causal so that h(t,0) = 0 for ¢ < 0, and that it is stable, so that [ h(t,8)dt < oo
which also implies lim; ., h(f) = 0. We also assume that h(t,0) is at least once
differentiable. This requires h(t,6) to start from a zero value at t = 0 and not have
any discontinuities.

The modulated filtered Gaussian white noise process can be expressed in the

form [16]

x(t) = q(t) {i/ h(t — 7,0)w(T)dr (4.1)

Oh J—co

where ¢(t) is the deterministic, non-negative modulating function, w(t) denotes the
Gaussian white noise process, 7 is the time of application of the pulse and oy, is the
standard deviation of the filtered white noise process represented by the integral

inside the square brackets.
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Chapter 4. Stochastic Ground Motion Model

Since the response of a stable filter to a white noise excitation becomes stationary
after sufficient time, and since the white noise process is assumed to have started in
the infinite past (the lower limit of the integral is —oo), the filter response at any
finite time point is stationary and, therefore, o, is a constant. One can easily show

that

o2 = 218 l / - e)dT] (4.2)

—0o0

where S is the intensity of the white noise process.
The modulated filtered white noise process defined by (4.1) lacks spectral non-

stationarity.

4.4 Fully Nonstationary Filtered White Noise Pro-

cess

To achieve spectral nonstationarity with the filtered white-noise process the filter
parameters are made to vary with time. Generalizing the form in (4.1), we define

the fully nonstationary filtered white-noise process as

z(t) = q(t) [ L / hit — 7,0(7)|w(r)dr (4.3)

on(t) Joo

where the parameters 6 of the filter are now made dependent on the time of appli-
cation of the load increment.

Naturally, the response of such a filter may not reach a stationary state. There-
fore, the standard deviation oy(t) of the process defined by the integral in (4.3) in

general is a function of time. One can easily show that

op =2nS Ut Rt — 7,0(7)]dr (4.4)

—00
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4.5. Discretization of the Nonstationary Process

The modulating function ¢(t) used to model ground motions usually starts from
a zero value and gradually increases with time. Furthermore, the damping value of
the filter used to model ground motions is usually large so that the IRF h[t —7,0(7)]
quickly diminishes with increasing ¢ — 7. Under these conditions, the lower limit
of the integral in (4.3) and (4.4), which is —oo, can be replaced with zero (or
a finite negative value) without much loss of accuracy. This replacement offers

computational convenience in the discretization of the process.

4.5 Discretization of the Nonstationary Process

In order to digitally simulate a stochastic process, discretization is necessary. Dis-
cretization is done in the time domain. The duration of the ground motion is dis-
cretized into a sequence of equally spaced time points t; = 7 x At for i =0,1,...n
where At is a small time step. At a time ¢, 0 < t < t,, letting ’ﬁ| = k, where

0 < k < mn, the process in (4.3) can be expressed as

() = g(t) {#@Z / bt — 7, 0(7)e(r)dr+
i=i i (4.5)
= /t Bt — 7, 0()(r)dr

Assuming hlt — 7,60(7)] remains essentially constant during each small time in-
terval t;_; <t <t; and neglecting the last term, which is an integral over a fraction

of the small time step, we get

() = q(t) | — Zh[t—ti,e(ti)]/t_i

| on(®)

w<7)d7'] (4.6)

1
on(t)

k
> bl —ti,H(ti)]Wi] Ct <t <tlpp (4.7)
=1
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Chapter 4. Stochastic Ground Motion Model

where

W /1t t w(r)dr (4.8)

W, for all i are statistically independent and identically distributed Gaussian random
variables having zero mean and variance 2w SAt. Introducing the standard normal

random variables u; = \/%%At’ (4.7) can be expressed as

V2mSAt

k
on(t) Z hit —t;, 0(t)]wi |, te <t <tpg (4.9)

i=1

2(t) = q(t) [

We have superposed hats on two terms in the above expression. The one on
#(t) is to highlight the fact that expressions (4.7) and (4.9) are for the discretized
process and employ the approximations involved in going from (4.5) to (4.7). The
hat on &5(t) is used to signify that this function is the standard deviation of the
discretized process represented by the sum inside the square brackets in (4.7), so
that the process inside the square brackets in (4.9) is properly normalized. Since

W; in (4.7) are statistically independent random variables, one has
k
G7(t) = 2wSALY B[t — £, 0(L:)], te <t < s (4.10)
i=1
This equation is the discretized form of (4.4).
The representation in (4.9) has the simple form as follows
k
B(t) = q(t) Y si(t) wy, ty <t <ty (4.11)
i=1

where

hlt —t.,0(t)] (4.12)
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hlt —t;,0(t; .
Sz(t> = [ ( )] , e <t < tpar, 0<i<k (413)

S Rt — 15, 0(t;)]

4.6 Characterization of the Ground Motion Pro-

cess

The intensity of a zero mean, Gaussian ground motion process which is characterized
by its time varying standard deviation is defined by the modulating function ¢(t).
The frequency content may be characterized in terms of a predominant frequency
and a measure of the bandwidth of the process, as they evolve in time. These
properties of the process are influenced by the selection of the filter, i.e. the form of

the IRF h[t — 7,6(7)], and its time-varying parameters (7).

As a surrogate for the predominant frequency of the process, here the mean zero-
level up-crossing rate, v(07,¢), i.e. the mean number of times per unit time that
the process crosses the level zero from below is used. Since the scaling of a process
does not affect its zero-level crossings, v(0%,¢) for the process in (4.11) is identical

to that for the process
k
y(t) = Z sit) wi, tr <t <tpp (4.14)

It is known that for such a process

1-— ng(t) O
(0%, 6) = Y Ozgg (4.15)

where o,(t), oy (t) and p,(t) are the standard deviations and cross-correlation co-

dy(®)

5 at time ¢. For the process in

efficient of y(t) and its time derivative, y(t) =
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Chapter 4. Stochastic Ground Motion Model

(4.15), these are given by

k
o) =) SH(t) =1, by <t <ty (4.16)
=1
k
op(t) =D S (t), te <t <tpp (4.17)
=1
1 k
pys(t) = D sit)dilt), te <t <tpn (4.18)

ay(t)oy(t) =

where §(t) = 20 Using (4.13) and h;(t) = h[t — t;,0(t;)], it is shown that
dt
SO, ] |
k 3
i1 h3(t) S R2()

J=1""

$i(t) = | ha(t) —

,tk§t<tk+1,0<i§k

(4.19)

For any differentiable IRF and filter parameter functions, the mean zero-level
up-crossing rate of the process can be computed from (4.15) by use of the relations
in (4.16) to (4.19). Naturally, the fundamental frequency of the filter will have a

dominant influence on the predominant frequency of the resulting process.

4.7 Parameterization of the Model

A modified version of the Housner and Jennings model [27] as stated below is used

as the modulating function.

(

0 t<Ty
2
T ﬂ) T,y <t<T
g(t) = (% o (4.20)
Omazx T1 S t S TQ
Omag €T Ty < g
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4.7. Parameterization of the Model

This model has six parameters Ty, 11, T5, Omae, @ and S which obey the condi-
tions Ty < T7 < 15, 0 < Opaz, 0 < a and 0 < . T denotes the start time of the
process, T} and Ty denote the start and end times of the strong-motion phase with
root mean square (RMS) acceleration o,,,, and a and § are parameters that shape

the decaying end of the modulating function.

Any damped single- or multidegree-of-freedom linear system that has differen-
tiable response can be selected as the filter, here
S GO sin [y (r), [1- G -] T <t

1-¢%(7)
hlt—7,6(7)] = ’

0 otherwise
(4.21)

which represents the pseudo-acceleration response of a single-degree-of-freedom lin-
ear oscillator subjected to a unit impulse, in which 7 denotes the time of application
of the pulse. 6(7) = [w¢(7), (¢(7)] is the set of parameters of the filter with ws(7) de-
noting the natural frequency and (;(7) denoting the damping ratio, both dependent
on the time of application of the pulse. ws(7) influence the predominant frequency
of the resulting process, whereas (;(7) influence its bandwidth. The predominant

frequency of an earthquake ground motion tends to decay with time. Therefore,

-

wi(r) = wo = (Wo = wn) (4.22)
n

in which %, is the total duration of the ground motion, wq is the filter frequency

at time ¢ty = 0 and w, is the frequency at time ¢,. For a typical ground motion,

Wy < wo. Thus, the two parameters wy and w,, describe the time-varying frequency

content of the ground motion.

Further analysis has shown that the linear form in (4.22) adequately characterizes
the frequency variation of most recorded ground motions. The filter damping (; can

be considered a constant.
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Chapter 4. Stochastic Ground Motion Model

With the above parameterization, the stochastic ground motion model is com-
pletely defined by specifying the forms of the modulating and IRF functions, and
the parameters that define them. Specifically, the six parameters (Ty, 11, T2, Omax,
a and f3) define the modulating function in (4.20) and the three parameters (wp, wy,

and (f) define the filter IRF in (4.21).

4.8 Parameter Identification

As shown above, the temporal and spectral characteristics of the model are com-
pletely separable. Specifically, the modulating function ¢(¢) describes the evolving
RMS of the process, whereas the filter IRF A[t — 7,6(7)] controls the evolving fre-
quency content of the process. This means that the parameters of the modulating
function and of the filter can be independently identified by matching the corre-

sponding statistical characteristics of a target accelerogram.

4.8.1 Identification of parameters in the modulating func-
tion

Let A = (Ty, T, Ts, Omas, @, B) denote the parameters of the modulating function,
so that ¢(t) = q(t, A). For a target accelerogram, a(t), we determine A by matching
the expected cumulative energy of the process, E,(t) = (3) Ot ¢*(7,\)dr, with the
cumulative energy in the accelerogram, E,(t) = (3) fot a*(7)dr, over the duration of

the ground motion, 0 < t < t,,. This is done by minimizing the integrated squared

difference between the two cumulative energy terms, i.e.

X = argmin /0 ; { /0 " (r N B(r)dr — /0 t QQ(T)B(T)dT} ar (4.23)

where B(t) is a weight function introduced to avoid dominance by the strong motion

phase of the record, otherwise, the tail of the record is not well fitted. The function,

max 2
B(t) = min [[q§+(t)]’ 5], where ¢o(t) is the modulating function obtained in a
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4.8. Parameter Identification

prior optimization without the weight function. The objective function in (4.23),
which was earlier used by Yeh and Wen [22] without the weight function, has the
advantage that the integral fot a*(t)B(7)dr is a relatively smooth function so that
no artificial smoothing is necessary.

As a measure of the error in fitting to the cumulative energy of the accelerogram,

we use the ratio

_ fon |E(t) — Eo(t)| dt

! i B, (t)dt

(4.24)

The numerator is the absolute area between the two cumulative energy curves and

the denominator is the area underneath the energy curve of the target accelerogram.

4.8.2 Identification of filter parameters

The parameters wy and w,, defining the time-varying frequency of the filter (4.22)
and parameters defining its damping ratio (y control the predominant frequency
and bandwidth of the process. Since these parameters have interacting influences,
wo and w, are first determined while keeping the filter damping, ¢y a constant. For
a given (y, the parameters wy and w, are identified by matching the cumulative
expected number of zero-level up-crossings of the process, i.e. fg v(0F, 7)dr with
the cumulative count N (07, t) of zero-level up-crossings in the target accelerogram

for all t, 0 < t < t,,. This is accomplished by minimizing the mean-square error

2

[Go(¢r), 6n(¢7)] = arg min /0 ' { /O V(0% T)r(r)dr — N(0,4)| dt (4.25)

where 7(7) is an adjustment factor as described below. v(0%, 7) is an implicit func-

tion of the filter characteristics w; and ¢y and therefore, wy , w, and (y. The same

is true for (7). The calculation of f(f v(0%, 7)dr is as described in Section 4.6.
When a continuous-parameter stochastic process is represented as a sequence of

discrete-time points of equal intervals At, the process effectively loses its content
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beyond a frequency approximately equal to %= rad/s. This truncation of high-
frequency components results in undercounting of level crossings. The undercount
per unit time, denoted r, is a function of At as well as the frequency characteristics
of the process. So r, is a function of At, wy and (. Approximate expressions for r

are

1 —0.0005 (wg(T) + Cf(7)) — 0.00425w¢(7)Cp(7)  when At = 0.01s

1 —0.01¢s(7) — 0.009w(7)Cf(T) when At = 0.02s
(4.26)

Since digitally recorded accelerograms are available only in the discretized form,
the count N(0T,t) underestimates the true number of crossings of the target ac-
celerogram by the factor r(7) per unit time. Hence, to account for this effect, we
must multiply the rate of counted up-crossings by the factor Tlr) However, r(7)
depends on the predominant frequency and bandwidth of the accelerogram. So, it

is more convenient to adjust the theoretical mean up-crossing rate (the first term

inside the square brackets in (4.25) by multiplying it by the factor r(7).

In order to solve (4.25), the filter damping ratio, ¢y which controls the bandwidth
of the process is selected. Corresponding wy and w,, are calculated. Measure of the

error in fitting to the cumulative number of zero-level up-crossings is given by

o v(0F, 7, W, &, C)r()dT — N(0F, 1) dt
[ N(0+,t)dt

by’

(4.27)

€Cw —

The optimum value of (; can be chosen by comparing the cumulative number
of negative maxima and positive minima of the target accelerogram and the fitted

model.
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Table 4.1: Summary of parameters of the stochastic ground motion model

S. No. Parameter Description
1 To Starting time of the process
2 Ty Starting time of the strong motion phase
3 15 Ending time of the strong motion phase
4 Omax RMS value of acceleration in strong motion phase
5 Q@ Parameter that shape the decaying end
6 6] parameter that shape the decaying end
7 Wo Filter frequency at time, Tj
8 Wn, Filter frequency at time, T,
9 Cr Filter damping ratio
10 tn Total duration of ground motion
11 At Time steps required

4.9 Summary of Parameters

A summary of all the parameters required to generate a ground motion using the

above described process is given in a tabular form in the Table 4.1. The first nine pa-

rameters are already described. Two more parameters are required. One is the total

duration of the ground motion 7;,, the other is the time steps in the accelerogram

represented by At.
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Chapter 5

Stochastic Simulation of Ground

Motions

5.1 Introduction

A method to generate an ensemble of artificial earthquake ground motions is de-
scribed in this chapter. The method is based upon the stochastic ground motion
model described in the previous chapter. A database of recorded earthquake ground
motions is created. In the next step, the nine parameters required to depict a
particular ground motion is found out for all the ground motions in the database.
Probability distributions are created for the parameters of all the earthquakes in the
database. Now, the parameters required by the stochastic ground motion model to
simulate ground motions are obtained from the distributions. Monte Carlo simula-

tions is used to generate an ensemble of ground motions.

5.2 Database of Recorded Time Histories

A database of recorded earthquake accelerograms is created. The earthquakes are
selected arbitrarily. Earthquakes with intensity varying from moderate to high that

have occurred throughout the world in the past century are chosen. The chosen
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5.2. Database of Recorded Time Histories

earthquakes have occurred on different site conditions and have different character-
istics. Earthquake data are collected from reliable sources like National Geophysical
Data Center (NGDC), USA 'and The European Strong Motion Database (ESD) 2.

The details of the earthquakes in the database is given in Table 5.1. All the
time histories are edited to an uniform format. Further, it is shown that there is
no correlation between the earthquakes by finding the average of the power spectral
densities of all the earthquakes. The plot as shown in Figure 5.1 shows that the

spectrum resembles that of a white noise.

| ! T T T T T T

’"g 4x10" F .
=

&

Z 7

2 3x10° =
[

a)

E

3 7

g  2x10' | i
75

)

=

@]

o 7

o | .
% 1x10

)

>

<

0 ) 1 . 1 . 1 1
0 2 4 6 8 1C

Frequency (Hertz)

Figure 5.1: Plot showing the average power spectral density vs frequency

Thttp: //www.ngdc.noaa.gov/hazard/data/cdroms,/ accessed in October 2009.
Zhttp://www.isesd.cv.ic.ac.uk/ESD/frameset.htm accessed in October 2009.
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Chapter 5. Stochastic Simulation of Ground Motions

5.3 Determination of Parameters

The nine parameters of the stochastic ground motion model as described in Section
4.7 are found out for each of the earthquakes in the database. The two additional
parameters that are required are the time duration 7}, and the time steps At. T,, is
known from the time history and At is taken as 0.02 sec for all the earthquakes.
As the temporal and spectral nonstationarities are separable in the considered
stochastic ground motion model, the parameters of the modulating function and
the parameters of the filter are found out separately. The results are shown for
one accelerogram. The accelerogram chosen is the October 18th, 1989 Loma Prieta

earthquake’s 90 component recorded at Los Gatos Presentation Centre.

5.3.1 Parameters in the modulating function

The six parameters required for the modulating function can be obtained by solving
(4.23) by using an optimization technique. The minimum of the unconstrained
multivariable function in (4.23) is obtained by using Nelder-Mead simplex algorithm

[28]. A MATLAB code is developed for this purpose.

0.25 T T
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oy ——~Maodel
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o 02F
logy
=y
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Figure 5.2: Cumulative energies in the target accelerogram and the fitted model
. t o2
Figure 5.2 compares the two energy terms 2E,(t) = [, ¢*(7, A)d7 and 2E,(t) =
fot a*(7)dr, described in Section 4.7. Tt is seen that the fit is good at all the time
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5.8. Determination of Parameters

Table 5.2: Values of parameters in the modulating function

S. No. Parameter Value
1 T 0.072932 sec
2 T 8.0154 sec
3 T, 12.88 sec
4 Omaz 0.16308 g
5 o 0.80585 sec™*
6 B 0.44846
7 tn 25 sec
8 At 0.02 sec

points. The error is minimised. The parameters obtained after optimization is

summarized in Table 5.2.

5.3.2 Parameters in the filter

Using the same method of optimization mentioned in Section 5.3.1, the parameters
in the filter is obtained by solving (4.25). To solve (4.25), first a value of (s is
assumed. (y is considered to be constant for the entire duration of the earthquake.
After obtaining the values of wy and w,,, seperate optimization is done by minimizing
the difference between the cumulative count of negative maxima and positive minima
of the target and the model. The values of wy and w,, are kept unchanged as it is
found that there is no big variation. Now, the exact value of ( is known. The
values of wy and w, are found corresponding to the final (y. For the considered
accelerogram it is found to be 0.8.

Shown in Figure 5.3 is the cumulative count of negative maxima and positive
minima as a function of time for the Loma Prieta, 1989 record as well as the esti-
mated values of the same quantity of the model with damping ration (; = 0.8. The

slope of these lines should be considered as the instantaneous measure of bandwidth.
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Figure 5.3: Cumulative count of negative maxima and positive minima

Table 5.3: Values of parameters in the filter

S. No. Parameter Value
1 wo 30.297 rad/sec
2 W, 10.075 rad/sec
3 Cr 0.8

The parameters in the filter obtained after optimization is summarized in Table 5.3.

Shown in Figure 5.4 is the cumulative number of zero-level up-crossings as a

function of time for the Loma Prieta, 1989 record as well as the estimated values of

the same quantity of the model. It is seen that the fit is good at all the time points.

5.4 Simulation of a Target Accelerogram

After finding out all the parameters, an accelerogram can be simulated by using

the process described in the previous chapter. Simulated accelerogram has similar
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Figure 5.4: Cumulative number of zero-level up-crossings in the target accelerogram
and model

characteristics but it will not be an exact replica of the target accelerogram. The

target accelerogram and a simulation is shown in the Figure 5.5.

To get more accurate simulations, the damping ratio of the filter (¢ should be
considered as varying at various intervals of time. For simplicity, the damping
ratio of the filter (s is considered as constant throughout the entire duration of the

earthquake.

Since we had described the ground acceleration as a filtered white noise process
which has a non-zero spectral density at zero frequency, the integral of the process
(the ground velocity or displacement) has infinite spectral density at zero frequency.
Because of this property, the variances of the velocity and displacement processes
keep on increasing even after the acceleration has vanished. This is contrary to (base-
line-corrected) accelerograms, which have zero residual velocity and displacement at
the end of the record. To overcome this problem, it is necessary to adjust the low-
frequency content of the stochastic model using a high-pass filter. This is not done

in the present work.
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Figure 5.5: Target accelerogram and a simulation using the fitted model
5.5 Distribution of Parameters

After identifying the model parameter values by fitting to each recorded ground mo-
tion in the database, a probability distribution is assigned to the sample of values of
each parameter. Now, there are 100 sets of parameters representing the 100 earth-
quakes. The time steps At is kept constant for all the 100 earthquakes. Distribution

models are assigned to each of the 10 parameters.

5.5.1 Pearson distributions

This approach proposed by Karl Pearson [29], seeks to ascertain a family of distribu-
tions that will satisfactorily represent observed data. Several important distributions

satisfy a difference equation that can be expressed in the form [30]

dp(x)  ap+aw
de by + bz + bya?

p(x) (5.1)

where p(x) is the probability density function (PDF) at any x. a; and b;, i = 0, 1,2
are constants calculated from central normalised statistical moments. They are

represented as
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5.5. Distribution of Parameters

ao = pi3(pa + 3) (5.2a)
ay = 10y — 18 — 63 (5.2b)
bo = 33 — 4j (5.2¢)
b = —ps(pa + 3) (5.2d)
by = 33 — 244 + 6 (5.2¢)

The moments p are given by

o= 2= e Y- B - 1 3 (P (5.3

o

Wwhere
| N
Exr = N ; x; (5.4a)
| XN
m = = Z [2; — E(x)]* (5.4b)

The moment p; is the mean, po is the variance, ug is the skewness and 4 is the

kurtosis. The determinant D is given by

D = 4byby — b7 (5.5)

The main types of distribution are distinguished based on the roots of the
quadratic in the denomonator of (5.1) and the value of by. Two of the important

types of distributions are explained as examples.
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Chapter 5. Stochastic Simulation of Ground Motions

Pearson Type I

When D < 0 and by # 0, the distribution is classified as Pearson type I which is

also called as the generalised § distribution. For this type, the PDF p(x)is given by

kn(x — 1) (29 — 7)° 1 < x <19

p(x) =
0 otherwise
where
bl + 2z
Tig = —
1,2 2by
,— ap + a1y <1
b2(I1 - $2)
¢ — ap + a1x9 > 1
bQ(JUQ - !E1)

here z = v/—D and k, is calculated such that f;f p(z)dr = 1.

Pearson Type IV

(5.6)

(5.7a)
(5.7b)

(5.7¢)

When D > 0 and by # 0, the distribution is classified as Pearson type IV. For this

type, the PDF p(x)is given by

T+z( )

p(ZL‘) _ Kn[a2 + (x_’_xO)Q]—ue—varctan( -

where

(5.8)
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5.5. Distribution of Parameters

Table 5.4: Statistical characteristics of the parameter data

Parameter Mean Standard Deviation Lowest Value Highest Value

1o 0.03 0.06 0.00 0.18
Ty 2.91 5.25 0.00 43.95
T 10.52 8.71 0.82 43.90
T, 40.88 28.40 6.50 180.12
o 1.46 1.77 0.01 8.47
3 1.24 1.31 0.01 7.67
O maz 0.08 0.07 0.01 0.33
Wo 31.89 13.28 8.86 73.26
Wh, 15.15 13.43 0.00 56.59
Cr 0.51 0.23 0.10 0.90
xo = 2b—b12 (5.9a)
—ay
u = 2_b2 >0 (5.9b)
_ 2bo(1 — u) (5.9¢)
z
2
a= %, (5.9d)

here z = /D and k, is calculated such that [ p(x)de = 1.

5.5.2 Distribution of model parameters

It is found that the data of all the 10 parameters are effectively fitted by /3 distri-
bution. A MATLAB code is written to determine the parameters required in (5.6).
The statistical details of the data of each parameter is given in Table 5.4.

Figure 5.6 shows the normalized frequency diagrams of the fitted model param-
eters for the entire dataset with the fitted probability density functions (PDFs)

superimposed. All the parameters have 8 distribution and the parameter values of
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Table 5.5: Details of the 8 PDF of all the parameters

Parameter Data 2, To r s ky,

Ty linear 0.01 0.16 -0.46 2.53 317
T linear 1.72 55.82 -0.80 7.78 4.98E-15
T log -0.59 1.84 488 283 1.75E-01
T, log -0.34 2.68 14.50 8.64 4.51E-05
Q@ linear -0.04 13.33 0.28 9.13 4.16E-11
15} linear 0.06 47.70 0.66 63.87 1.25E-107

O maz log -2.61  0.28 6.48 7.50 6.30E-03
Wo linear 9.74 141.16 2.02 13.90 2.95E-33
Wy, linear -2.96 67.00 0.61 3.62 3.17E-09
Cr linear 0.05  1.02 0.59 0.73 3.61

their distribution is listed in Table 5.5.

5.6 Generation of an Ensemble of Ground Mo-
tions

A cluster of earthquake ground motions is produced. This is done by randomly
selecting the parameters of the stochastic ground motion model. Initially 10000
samples of each parameter is arbitrarily chosen from the distributions of the partic-
ular parameter. From this pool of samples, 5000 sets of parameters which satisfy
the conditions specified in Section 4.7 are chosen.

Using this 5000 sets of parameters, 5000 artificial ground motions are gener-
ated. This cluster of earthquakes represents a completely random choice of ground

motions.
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Chapter 6

Stochastic Response of an Isolated

Building

6.1 Introduction

The stochastic response of the base-isolated building structure is calculated by us-
ing direct Monte Carlo simulations. The uncertainty in the characteristics of the
ground motion is considered and all the structural parameters are considered to
be deterministic. Response analysis, reliability analysis and parametric studies are
presented in this chapter. The deterministic analysis procedure for each simulation

is as described in the Chapter 3.

6.2 Response Quantities

The response quantities of interest are the absolute peak value of the acceleration at
the top floor, hereinafter simply referred as top floor acceleration and the peak value
of the isolator displacement hereinafter simply referred as isolator displacement.
To perform the response analysis, a total of 5000 artificial earthquakes are sim-
ulated as described in Section 5.6. Deterministic analysis is performed for each

simulation and their corresponding response quantities are calculated. The deter-
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6.2. Response Quantities

Table 6.1: Summary of parameters of the isolator for stochastic response

S. No. Parameter Value
1 Ratio of floor mass to isolator mass 1:1
2 Damping Ratio of the isolator, ¢, 0.1
3 Time period of the isolator, T 2.0 sec
4 Design Displacement, D 40 cm
5 Yield displacement, ¢ 2.5 cm

ministic results are then processed to find the peak values, root mean square (RMS)

values and distributions of the response quantities.

While calculating the responses, the parameters of the structure are kept un-
changed. The parameters are as given in Table 3.1. The parameters of the isolator

considered are tabulated in Table 6.1.

The distributions of the responses are calculated. The type of the distribution
is found out by using Pearson distributions as described in Section 5.5. The param-
eters of the distribution are calculated by using MATLAB functions which use the
maximum likelihood estimates (MLE) to find the parameters of the distribution.
The top floor acceleration is found to be fitted effectively by using beta distribution

and the isolator displacement is effectively fitted by generalized pareto distribution.

The PDFs of the response quantities are plotted and superimposed with their
observed frequency diagrams as shown in Figure 6.1. The cumulative distribution
function (CDF) is plotted for both the response quantities and is shown in Figure

6.2.

The statistical characteristics of the response quantities are tabulated in Table
6.2. For the considered parameters, the extreme top floor acceleration is found
to be 0.89g and the extreme isolator displacement is found to be 92 cm. Their

corresponding root mean square values (RMS) are 0.185g and 9.122 cm.
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Figure 6.1: PDF of response quantities superimposed on observed normalized fre-
quency diagrams

Table 6.2: Statistical details of the response quantities

Response quan- Lowest Highest Mean Standard Distribution
tity Value Value Deviation Type

Top floor acceler- 1.47E-06 0.89 0.158 0.097 Beta

ation (g)

Isolator Displace- 0.004 92 5.873 6.981 Generalized
ment (cm) Pareto

6.3 Extreme Earthquakes

An attempt is made to study the characteristics of the earthquakes which produce
extreme responses. After 5000 simulations, 40 earthquakes were found to produce a
top floor acceleration in excess of 0.4 g and 38 earthquakes were found to produce
an isolator displacement in excess of 40 cm. It is seen that the base isolation is

effective for more than 99 percent of the earthquakes generated.

After studying the parameters of the earthquakes that produce extreme re-
sponses, it is found that most of the earthquakes have a high value of RMS ground

acceleration in the strong motion phase which is given by the parameter o,,,,. How-
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6.4. Reliability Analysis
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Figure 6.2: CDF of response quantities superimposed on observed normalized fre-
quency diagrams

ever, there are some earthquakes with lesser value of ,,,, which produce higher
responses. This is due to the fact that the predominant frequency of the earthquake
ground motion approaches the fundamental frequency of the base isolated building
considered which induces the phenomenon of resonance.

To establish a relationship between the characteristics of these earthquakes and
for a detailed study of these extreme earthquakes a huge number of simulations are

required.

6.4 Reliability Analysis

6.4.1 Limit state

The probability of failure or limit state probability for this system is defined using
a limit state function which is defined as the case where the top floor accelerations

reach a 0.3 g acceleration level.

This can be formally stated with the limit state function

h(X) = 0.3 — |a (6.1)
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Chapter 6. Stochastic Response of an Isolated Building

where a; is the peak acceleration of the top floor in g. Then, the probability of

failure is defined as

Py = PIA(X) < 0] (6.2)

6.4.2 Probability of failure

The probability of failure is evaluated via Monte Carlo simulation by determining
the number of realizations with hA(X) < 0 and dividing that number by the total
number of simulations.

The convergence of the probability of failure is demonstrated in Figure 6.3 where
the isolator parameters T, = 2.0 sec, ¢ = 2.5 cm, ¢, = 0.1 and D = 40 cm. From
Figure 6.3 it is seen that the probability of failure reaches a constant level at around

5000 simulations. Therefore, the convergence is achieved after 5000 simulations.

0.60 y T y T T T T T

045 F .

0.30

Probability of Failure, Pp

0.15

000 L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000

Number of Simulations

Figure 6.3: An example of convergence of probability of failure for the isolation
system
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6.5. Parametric Studies

Table 6.3: Peak values of the response of the structure: 200 simulations
Top floor acceleration (g) Isolator displacement (cm)
=005 (=0.1 G=0.15 (=02  (,=0.05 (4=0.1 (,=0.15 (4=0.2

Ty,=2 sec

q=0.01 cm 0.93 1.03 1.20 1.41 83.28 65.54 46.40 44.47
q=2.5 cm 1.00 0.90 1.08 1.19 85.94 67.33 49.53 45.47
q=>5 cm 1.00 0.87 0.90 1.06 86.79 69.25 55.10 45.54
T,=3 sec

q=0.01 cm 0.92 0.68 0.73 0.77 211.77 152.85 130.88 116.13
q=2.5 cm 0.92 0.70 0.60 0.61 210.52 158.47 136.64 122.41
q=>5 cm 0.90 0.70 0.58 0.51 203.82 162.15 140.13 127.05
Ty=4 sec

q=0.01 cm 0.82 0.63 0.55 0.52 339.29 284.78  247.10 217.39
q=2.5 cm 0.82 0.62 0.52 0.45 336.75 281.76  243.81 217.20
q=5 cm 0.79 0.63 0.51 0.42 332.92 284.08 241.39 222.21
T,=5 sec

q=0.01 cm 0.92 0.81 0.78 0.60 600.32 561.73  585.86 506.79
q=2.5 cm 0.90 0.78 0.74 0.60 596.43 563.25 572.98 489.96
q=5 cm 0.88 0.80 0.70 0.52 590.34 571.18 557.81 466.00

6.5 Parametric Studies

Analyses are conducted for different isolation periods and isolation damping ratios
of isolation floor. Combinations of isolation periods of 2, 3, 4 and 5 sec, isolation
damping ratios of 5%, 10%, 15% and 20% and isolator yield displacements of 0.01
cm, 2.5 cm and 5 cm are considered. Therefore, a total of 64 different structures are
analysed. For every combination, the design displacement, D of the isolator is kept

constant at 40 cm.

The peak top floor acceleration and peak isolator floor displacement, and the
root mean square (RMS) values corresponding to these are in Tables 6.3 to 6.6. The
RMS values of the response quantities for 200 simulations as shown in Table 6.4
and the corresponding values for 400 simulations shown in Table 6.6 are not varying
significantly. So, the number of simulations for conducting parametric studies is

fixed at 400.
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Table 6.4: RMS values of the response of the structure: 200 simulations

Ty,=2 sec
q=0.01 cm
q=2.5 cm
q=>5 cm

T,=3 sec
q=0.01 cm
q=2.5 cm
q=>5 cm

Ty=4 sec
q=0.01 cm
q=2.5 cm
g=5 cm

T,=5 sec
q=0.01 cm
q=2.5 cm
q=>5 cm

Top floor acceleration (g)

Isolator displacement (cm)

=005 (=01 (,=0.15 (,=02  (,=0.05 (=0.1 (,=0.15 (=02
0.35 049  0.60 0.70 19.74  13.03  9.92 8.51
0.28 030 0.38 0.47 2153 1472 1216  10.58
0.29 0.28  0.32 0.37 2312 16.65 13.96  12.57
0.25 029  0.37 0.43 44.98 3412 2758 2424
0.22 019  0.19 0.21 45.94 3551  20.82  26.67
0.22 018  0.17 0.18 46.45  36.64 3111  28.28
0.20 021  0.26 0.30 71.09 5819  50.76  47.14
0.18 015  0.14 0.14 7167  58.68  52.00  49.04
0.18 015  0.13 0.13 7190  59.02  52.95  50.55
0.17 0.18  0.20 0.23 99.58  92.66 88.35  81.46
0.16 014 0.3 0.12 99.44 9290 8856  82.48
0.15 0.14  0.12 0.11 99.31 9330 8850  82.67

Table 6.5: Peak values of the response of the structure: 400 simulations

Ty=2 sec
q=0.01 cm
q=2.5 cm
q=5 cm

T,=3 sec
q=0.01 cm
q=2.5 cm
q=5 cm

Ty=4 sec
q=0.01 cm
q=2.5 cm
q=5 cm

T,=5 sec
q=0.01 cm
q=2.5 cm
q=5 cm

Top floor acceleration (g)

Isolator displacement (cm)

(=005 (=01 (=015 (=02 (=005 (,=0.1 (,=0.15 (,=0.2
0.99 1.03  1.25 1.59 85.76  67.94  54.44  44.71

1.00 0.90  1.08 1.27 87.79 7598  61.18 4547

1.00 0.92  0.90 1.06 8749 7536  65.62  49.34

0.92 0.68  0.73 0.77 211.77 15285 130.88  116.13
0.92 0.70  0.60 0.61 21052 15847 136.64  122.41
0.90 070 0.58 0.51 203.82  162.15 140.13  127.05
0.82 071 057 0.57 339.20 31427 267.91  217.39
0.83 070 0.58 0.45 337.17 31772 266.66  217.20
0.83 070 0.51 0.43 340.30  314.89 25874 22221
0.92 081  0.78 0.60 600.32  561.73 585.86  506.79
0.90 078  0.74 0.60 596.43  563.25 572.98  489.96
0.88 0.80  0.70 0.52 590.34  571.18 557.81  466.00
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6.5. Parametric Studies

Table 6.6: RMS values of the response of the structure: 400 simulations
Top floor acceleration (g) Isolator displacement (cm)
=005 (=01 =015 (,=02  (,=0.05 (=0.1 =015 ;=02

Ty,=2 sec

q=0.01l cm 0.33 0.47 0.58 0.67 17.97 11.74 8.97 7.63
q=2.5 cm 0.26 0.28 0.37 0.45 19.64 13.65 11.31 9.70
q=>5 cm 0.27 0.27 0.30 0.35 21.12 15.57 13.20 11.61
T,=3 sec

q=0.01 cm 0.23 0.28 0.35 0.42 40.90 30.05 23.88 20.60
q=2.5 cm 0.20 0.17 0.18 0.20 41.73 31.50 25.92 22.99
q=>5 cm 0.20 0.17 0.16 0.17 42.24 32.66 27.23 24.63
Ty=4 sec

q=0.01 cm 0.18 0.21 0.25 0.29 65.58 53.73 45.62 40.69
q=2.5 cm 0.17 0.14 0.13 0.13 66.02 54.33 46.82 42.48
q=5 cm 0.17 0.14 0.12 0.12 66.33 54.70 47.69 43.94
T,=5 sec

q=0.01 cm 0.15 0.16 0.19 0.22 89.80 82.49 75.56 67.96
q=2.5 cm 0.14 0.12 0.11 0.10 89.88 82.67 75.90 69.20
q=>5 cm 0.14 0.12 0.11 0.10 89.92 82.91 75.92 69.60

It is observed that the top floor acceleration decreases with the increase in the
yield displacement of the isolator and the isolator displacement decreases with the
increase in the yield displacement.

Figures 6.4, 6.5 and 6.6 show the variation of response quantities for different
isolation periods, T, and isolation damping ratios, (, when the value of the yield
displacement of the isolator, ¢ is assumed as 0.01 c¢m, 2.5 cm and 5 c¢cm respectively.
It can be seen that the top floor acceleration decreases as the isolation time period
increases. Also, the top floor acceleration decreases as the damping ratio increases.
The displacement in the isolator increases as the time period increases, and decreases

as the damping ratio increase.

The acceleration response decreases with increasing isolation periods. The small-
est possible acceleration favors the selection of T, = 5 sec for the isolation period.

However, peak isolator displacement is high with long isolation periods. This prob-
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Chapter 6. Stochastic Response of an Isolated Building

lem can be solved by employing high damping. Therefore, the isolation system with

a long isolation period and high damping is the most effective.

This design approach for the isolation system can help design engineers in de-

signing reliable isolation systems.
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Figure 6.4: Variation of response quantities for different isolation periods, T}, and
isolation damping ratios, (;, ¢ = 0.01 cm, 400 simulations
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Figure 6.5: Variation of response quantities for different isolation periods, T;, and
isolation damping ratios, (5, ¢ = 2.5 cm, 400 simulations
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Figure 6.6: Variation of response quantities for different isolation periods, T;, and
isolation damping ratios, (;, ¢ = 5 cm, 400 simulations
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Chapter 7

Conclusion

7.1 Summary and Conclusion

In this study, a database of recorded earthquakes is created and a probabilistic
method to generate artificial earthquakes based on recorded ground motions in the
database is provided. Using Monte Carlo simulations, stochastic response of a five
storey base-isolated building under earthquake excitations is reported by considering
the earthquake parameters to be uncertain. A reliability analysis is done. A study on
the parameters of the earthquake which produces very high responses is attempted.
A parametric study based on the isolator characteristics is done.

Based on the work it is concluded that:

1. About 0.8 percent of the earthquakes simulated by using the probabilistic
model produces very high responses. These earthquakes generally have very

high average intensity in the strong motion phase.

2. The base isolation is very effective for more than 99 percent of the earthquakes

generated.

3. The top floor acceleration decreases with the increase in the yield displacement
of the isolator and the isolator displacement decreases with the increase in the

yield displacement.
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7.2. Limitations

4. The isolation system with a long isolation period and high damping is the

most effective.

7.2 Limitations

The probabilistic model developed is based on arbitrary recorded earthquakes. As
a result, the earthquakes produced are highly random in nature. Therefore, studies
using specific characteristics of earthquakes such as site conditions, fault type, etc
cannot be studied.

The uncertainties in the characteristics of the structure and the isolator are
neglected.

The accuracy of the Monte Carlo simulations depends largely on the number of
simulation. Therefore, a large number of simulations are required which consumes

a lot of time.

7.3 Future Scope of Work

An extensive database with earthquakes with specific characteristics like fault type,
site characteristics etc can be developed. The model developed can be used to
generate an earthquake of desired qualities.

The predictive equations used to predict the earthquake characteristics for a
particular site can be combined with the ground motion model to produce a set of
earthquakes pertaining to that site. By doing this, it will be possible to generate a
ground motion for a particular site with an associated probability of occurrence of
that particular ground motion. Software can be developed by using the database
and the set of program developed which will be very useful for design engineers.

The uncertainties in the isolator characteristics and the structural characteristics
like stiffness and damping can be modelled and a stochastic analysis of a base isolated

structure under earthquake excitation can be done.
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Chapter 7. Conclusion

A comprehensive stochastic analysis of base isolated structure can be done by
using non-sampling methods like the Karhunen Loeve method and the Polynomial

Chaos method.
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